Linux 下两个最主要的汇编器是 Nasm(free, Netwide Assembler)和 GAS(free, Gnu A
ssembler),
后一个和 GCC 结合在一起. 在这篇文章里我将集中在 Nasm 上, 把 GAS 放在后面,
它使用 AT&T 的语法, 需要一个长的介绍.
Nasm 调用时应该带上 ELF 格式选项("nasm -f elf hello.asm"); 产生的目标文件用
GCC 来链接("gcc hello.o"), 产生最终的 ELF 二进制代码. 下面的这个脚本可用来
编译 ASM 的模块; 我尽量把它写得简单,所有它做的就是接受传给它的第一个
文件名, 用 Nasm 编译, 用 GCC 来链接.
#!/bin/sh
# assemble.sh =========================================================
outfile=${1%%.*}
tempfile=asmtemp.o
nasm -o $tempfile -f elf $1
gcc $tempfile -o $outfile
rm $tempfile -f
#EOF ==================================================================
基本知识:
----------
当然最好的就是在了解系统细节之前从一个例子开始. 这里是一个最基本的
"hello-word" 形式的程序:
; asmhello.asm ========================================================
global main
extern printf
section .data
msg db "Helloooooo, nurse!",0Dh,0Ah,0
section .text
main:
push dword msg
call printf
pop eax
ret
; EOF =================================================================
纲要: "global main"声明为全局的(global) -- 并且既然我们用 GCC 来链接,
进入点以 "main" 来命名 -- 从而装入系统. "extern printf" 只是一个声明,
为以后在程序中调用; 注意这是的; 参数的大小不需要声明. 我已经把这个
例子用标准的 .data, .text 分节, 但这不是严格的 -- 可能只需要一个 .text
段, 就像在 DOS 下一样.
在代码的主体部分, 你把参数压栈来传递给调用. 在 Nasm 里, 你声明
所有不明确数据的大小; 因此就有 "dword" 这个限定词. 注意和其他汇编器一样,
Nasm 假设所有的内存/标号的引用都指的是内存地址或者标号, 而不是它的内容.
因而, 指明字符串 'msg' 的地址, 你应该使用 'push dword msg', 指明字符串 'msg'
的内容, 应该用 'push dword [msg]' (这只能包含 'msg' 的前四个字节).prin
tf
需要一个指向字符串的指针, 我们应该指明 'msg' 的地址.
调用 printf 非常的直接. 注意每一次调用后你把栈清除(见下);PUSH 了一
个
dword 后, 我从栈里把一个 dword POP 进一个无用的寄存器. Linux 程序只简单的用一个 RET 来返回系统,每个进程都是 shell(或者是 PID)的产物,程序结束后把
控制权还给它.
注意到在 Linux 下, 你是在 "API" 或中断服务的场所里使用系统带来的标准共享库.
所有
的外部引用由 GCC 管理, 它给 asm 程序员节省了大部分的工作. 一旦你习惯了基本的
技
巧, Linux 下的汇编编程实际上要比 DOS 简单的多.
C 调用的语法
--------------------
Linux 使用 C 的调用模式 -- 意味着参数以相反的顺序进栈(一个最先), 调用者必
须清
除栈. 你可以从栈里把值 pop 出来:
push dword szText
call puts
pop ecx
或者直接修改 ESP:
push dword szText
call puts
add esp, 4
调用的返回值在 eax 或 edx:eax 如果值大于 32 位的话. EBP, ESI, EDI, EBX 由调用
者
保存和恢复. 你保存你要使用的寄存器, 像下面这样:
; loop.asm =================================================================
global main
extern printf
section .text
msg db "HoodooVoodoo WeedooVoodoo",0Dh,0Ah,0
main:
mov ecx, 0Ah
push dword msg
looper:
call printf
loop looper
pop eax
ret
; EOF ======================================================================
粗一看, 非常简单:你在 10 个 printf() 调用用的是同一个字符串, 你不需要清
除栈. 但当你编译以后, 循环不会停止. 为什么?printf() 里什么地方用了 ECX
但没有保存. 使你的循环正确的工作, 你在调用之前保存 ECX 的值, 调用之后
恢复它, 像这样:
; loop.asm ================================================================
global main
extern printf
section .text
msg db "HoodooVoodoo WeedooVoodoo",0Dh,0Ah,0
main:
mov ecx, 0Ah
looper:
push ecx ;save Count
push dword msg
call printf
pop eax ;cleanup stack
pop ecx ;restore Count
loop looper
ret
; EOF ======================================================================
I/O 端口编程
--------------------
但直接访问硬件会怎么样呢? 在 Linux 下你需要一个核心模式的驱动程序来做这些
工作... 这意味着你的程序分成两个部分, 一个核心模式提供硬件直接操作的功
能, 其他的用户模式提供接口. 一个好消息就是你仍然可以在用户模式的程序中使用IN/OUT 来访问端口.
要访问端口你的程序取得系统的同意; 要做这个, 你调用 ioperm(). 这个函
数只能被有 root 权限的用户使用,你用 setuid() 使程序到 root 或者直接
运行在 root 下. ioperm() 的语法是这样:
ioperm( long StartingPort#, long #Ports, BOOL ToggleOn-Off)
'StartingPort#' 指明要访问的第一个端口值(0 是端口 0h, 40h 是端口 40h, 等等),
'#Ports'
指明要访问多少个端口(也就是说, 'StartingPort# = 30h', '#Port = 10', 可以访问
端口
30h - 39h), 'ToggleOn-Off' 如果是 TRUE(1) 就能够访问, 是 FALSE(0) 就不能访问
.
一旦调用了 ioperm(), 要求的端口就和平常一样访问. 程序可以调用 ioperm() 任意多
次,
而不需要在后来调用 ioperm()(但下面的例子这样做了),系统会处理这些.
; io.asm ===================================================================
=
BITS 32
GLOBAL szHello
GLOBAL main
EXTERN printf
EXTERN ioperm
SECTION .data
szText1 db 'Enabling I/O Port Access',0Ah,0Dh,0
szText2 db 'Disabling I/O Port Acess',0Ah,0Dh,0
szDone db 'Done!',0Ah,0Dh,0
szError db 'Error in ioperm() call!',0Ah,0Dh,0
szEqual db 'Output/Input bytes are equal.',0Ah,0Dh,0
szChange db 'Output/Input bytes changed.',0Ah,0Dh,0
SECTION .text
main:
push dword szText1
call printf
pop ecx
enable_IO:
push word 1 ; enable mode
push dword 04h ; four ports
push dword 40h ; start with port 40
call ioperm ; Must be SUID "root" for this call!
add ESP, 10 ; cleanup stack (method 1)
cmp eax, 0 ; check ioperm() results
jne Error
;---------------------------------------Port Programming Part--------------
SetControl:
mov al, 96 ; R/W low byte of Counter2, mode 3
out 43h, al ; port 43h = control register
WritePort:
mov bl, 0EEh ; value to send to speaker timer
mov al, bl
out 42h, al ; port 42h = speaker timer
ReadPort:
in al, 42h
cmp al, bl ; byte should have changed--this IS a timer
jne ByteChanged
BytesEqual:
push dword szEqual
call printf
pop ecx
jmp disable_IO
ByteChanged:
push dword szChange
call printf
pop ecx
;---------------------------------------End Port Programming Part----------
disable_IO:
push dword szText2
call printf
pop ecx
push word 0 ; disable modepush dword 04h ; four ports
push dword 40h ; start with port 40h
call ioperm
pop ecx ;cleanup stack (method 2)
pop ecx
pop cx
cmp eax, 0 ; check ioperm() results
jne Error
jmp Exit
Error:
push dword szError
call printf
pop ecx
Exit:
ret
; EOF ===