1 引言
随着微处理器的产生,价格低廉、结构小巧的CPU和外设连接提供了稳定可靠的硬件架构,那么限制嵌入式系统发展的瓶颈就突出表现在了软件方面。尽管从八十年代末开始,陆续出现了一些嵌入式操作系统,比较着名的有Vxwork、pSOS、Neculeus和Windows CE.但这些专用操作系统都是商业化产品,其高昂的价格使许多低端产品的小公司望而却步;而且,源代码封闭性也大大限制了开发者的积极性。另外,结合国内实情,当前国家对自主操作系统的大力支持,也为源码开放的LINUX的推广提供的广阔的发展前景。还有,对上层应用开发者而言,嵌入式系统需要的是一套高度简练、界面友善、质量可靠、应用广泛、易开发、多任务,并且价格低廉的操作系统。在不久的将来,从冰箱到收音机都会内置处理器。因为Linux的开放性,许多人认为Linux非常适合多数Internet设备。他们认为Linux可以支持不同的设备,支持不同的配置。Linux对厂商不偏不倚而且成本极低,能够很快成为用于各种设备的操作系统。如今,业界已经达成共识:即嵌入式linux是大势所趋,其巨大的市场潜力与酝酿的无限商机必然会吸引众多的厂商进入这一领域。
通过采用MISC类设备,在挂载设备驱动时无须再用到mknod命令分配主设备号、次设备号和创建设备节点名,在insmodl挂载之后,只须mdev-s就能自动装配/dev目录下的设备文件。
高速模拟数字转换器有多种结构可供选择,其中以快闪式、流水线式或折叠/内插式等三种最受欢迎。采用快闪式及折叠/内插式的结构可让数字 CMOS 工艺发挥更大的灵活性。折叠式模拟数字转换器的优点是速度快,而且所需的比较器比快闪式模拟数字转换器少。内插式模拟数字转换器则只需极少量输入放大器,而且所需的输入电容也较低。我们所知的折叠/内插式结构便是这两种技术的集成,其优点是管芯体积较小、功耗较低、而动态性能又很高。
2AD7859L的引脚功能描述和寄存器
AD7859L的引脚功能描述如表1所示。
AD7859L包含一个控制寄存器,A/D转换输出寄存器,状态寄存器,测试寄存器和10位校正寄存器。控制寄存器只能写入,A/D转换输出寄存器和状态寄存器只能读取,测试寄存器和校正寄存器是可读可写的。
向AD7859L写入数据时,数据宽度必须是16位。16位数据写入AD7859L时,既可作为一个16位字,也可作为2个8位字节,取决于引脚W/B上的逻辑电平。当W/B接高电平时,16位数据从DB0传输到DBl5,DB0为最低位,DBl5为最高位。当W/B接低电平时,引脚DB8/HBEN作为高字节使能,2个8位字节的数据从DB0传输到DB7,DB0为最低位,DB7为最高位。当以2个8位字节写入数据时,必须先写低字节,再写高字节。16位数据的最高2位ADDRl、ADDR0,通过编码决定访问哪一个寄存器,后面的14位数据写入该寄存器。表2为编码分布。
读寄存器时必须先设置控制寄存器的DB6和DB7位,即RDSLTO和RDSLTl。这2位通过编码决定访问哪一个寄存器。上电时这2位初始值是00,因此读取操作访问的寄存器是A/D转换输出寄存器。同写寄存器一样,字模式或者字节模式均可以。当以字节模式读校正寄存器时,必须先读低字节。
3 AD7859L驱动程序
操作系统一般提供设备驱动程序完成对特定硬件的控制,以建立应用程序和设备之间的抽象接口,而不是应用程序直接操作硬件。设备驱动程序实际上是操作硬件的软件,是内核中具有最高特权级的、驻留内存的、可共享的底层硬件处理例程。
采用MISC类设备来添加AD7859L驱动。AD7859L的结构体定义语句如下:
从2.6版本内核开始引入了platform这个概念,在开发底层驱动程序时,首先要确认设备的地址、中断向量号。在内核中添加AD7859L的地址、中断号、设备节点名。设备驱动在加载时首先需要调用的入口函数module_init(),该函数完成设备驱动的初始化工作,如寄存器置位、结构体赋值等,其中最重要的工作就是向内核注册该设备。在应用程序中打开设备文件,然后利用ioctl()函数向驱动传递各种控制命令。每一次A/D转换完成后都会产生中断,调用中断响应函数,将转换好的数据写到缓冲区中。当用户需要读取A/D转换的数据时,通过调用read()函数,读取缓冲区数据。驱动程序结构如图1所示。
3.1 平台资源
在2.6内核中将每个设备的资源用结构platform_device描述,该结构体在/include/linux/platform_device.h中定义。AD7859L驱动的平台资源如下。在文件/arch/arm/roach—s3c2410/devs.c中添加下述结构体。
该宏定义在map.h文件中。第二组描述了AD7859L设备的中断向量号。flags描述资源类型,设备驱动会根据flags来获取相应的资源信息。在结构体static struct platform_device*smdk2410_devices[]__initdata添加上述s3c_device_ad7859ADC平台资源。该结构体在/arch/arm/mach—s3c2410/mach—smdk2410.C文件中定义。
3.2 MISC类设备
在AD7859L的结构体内创建一个miscdevice类型设备驱动的结构体指针,增添一个misc类型设备。该结构体在/include/miscdevice.h中定义。
在AD7859L驱动的probe函数中调用misc_register(stmctmiscdevice*misc)函数,对misc类设备注册,这个函数会为内核注册一个misc类型设备,如果minor被设置为MISCDYNAMIC_MINOR,系统会动态的为该设备分配一个次设备号,用以区分其他的设备。不同类型的设备调用的设备注册和注销函数有所不同。misc类设备的注销函数为misc_deregister(struct miscdevice}misc)。成功均返回零,否则返回一个错误代码。
3.3 应用
测试的应用程序相对简单,利用open函数打开设备文件,通过ioctl函数设置AD7859L的各个采样参数,包括选择哪几路通道进行采样,采样的时间间隔,采样的方式等等。利用read函数读取缓冲区数据,在程序退出时调用close函数关闭设备文件。
4 结语
AD7859L是一款高速、低功耗的模数转换器,在测量行业有着很广阔的应用前景。随着大家对Linux的认可,嵌入式Linux会被越来越多的人所接受。通过介绍在Linux下以MISC类设备方式开发AD7859L的设备驱动程序,让大家更清楚的理解MISC类型设备的操作方法。