0 引言
电子技术的快速发展使得各种各样的电子产品都朝着便携式和小型轻量化的方向发展,也使得更多的电气化产品采用基于电池的供电系统。目前,较多使用的电池有镍镉、镍氢、铅蓄电池和锂电池。它们的各自特点决定了它们将在相当长的时期内共存发展。由于不同类型电池的充电特性不同,通常对不同类型,甚至不同电压、容量等级的电池使用不同的充电器,但这在实际使用中有诸多不便。
本文介绍一种基于单片机的智能充电器的设计方法。该充电器可以实时采集电池的电压和电流,并对充电过程进行智能控制。它可以自动计算电池的已充电量和剩余的充电时间,也可以改变参数来适应各种不同电池的充电。系统中的管理电路还具有保护功能,可防止电池的过充和过放对电池造成。
1 智能充电器的硬件设计
该智能充电器采用的是分布式控制方法,它由充电电路、充放电控制电路、显示和接口电路组成,图1所示是其电路组成框图。
电池充电有恒压、恒流两种充电方式,事实上,恒压、恒流源电路也是充电电路的主要组成部分。由于各种电池对充电电压和充电电流的要求不同,因此,实现智能充电必须根据各种电池的自身要求来调整充电电压和充电电流的大小。这里选择bq2054集成电路作为恒压、恒流源模块来对电池进行充电。为了保证电池的安全,当电池电压和温度超过设定的极限值时,bq2054将禁止对电池进行充电。而当电池电压小于低电压阀值时,bq2054将用恒流方式进行充电。1.1 充电电路的设计
图2所示是该智能充电器的恒压恒流电路原理图。图2中的GB+、GB-分别连接充电电池的正极和负极,以为充电电池提供充电电流的通道。数字电位器MAX5434通过串行数据总线和控制电路进行通信,以确定电位器的阻值,并改变电池电压分配网络的比值,从而改变bq2054中BAT脚的输入电压,以便bq2054根据BAT脚电压的大小来改变对电池的充电电压,最终达到对电池进行恒流、恒压充电的目的。
图3所示是该充电器的充放电控制电路。图中,将PWMCTL连接到bq2054的MOD输出脚,便可用MOD输出的脉冲信号控制三极管的导通和关闭,从而改变充电电流的大小。24 V电源是充电电路的外部输入电源,可用来提供充电电流。GB+连接到充电电路的电池正极,其电压就是充电电池的电压,当电池电压没有达到设定电压时,充电电路将以恒流方式对其进行充电。当电池电压达到设定充电电压后,充电电压保持恒定不变,而充电电流逐渐减少,进入相应的恒压充电阶段。1.2 自动控制电路设计
图4所示是该充电器的主控电路。图4中的CCS,DCS,VS-BAT分别是用于采集电池充电电流,放电电流,充电电压的端口,它们经过滤波放大后和P87LPC767的AD转换脚相连接,并经过转换判断电池的充放电状态后,可对电池的充放电作出相应的控制,这些判断和控制都是由软件来完成的。主要是通过采集充电电路中的LED1~LED3等三个输出口的电平高低,并根据它们的高低电平状态组合控制电池的充电状态。SMBC和SMBD是P87LPC767和智能电池之间虚拟的异步串行通讯总线的时钟线和数据线,P87LPC767的内部定时器2可提供模拟异步串行通讯总线的控制时钟。E-CHG是充电控制使能端口,可在满足充电条件并设定充电方式后置其为高电平,以启动充电电路对电池的充电,反之,当出现过温、过电流、过电压、充电故障或充电满状态时,该端为低电平,以关断充电电路。E-DSG是放电使能控制端口,当检测到镍铬电池没有放电完毕时,P87LPC767就把E-DSG置为高电平,启动放电电路对镍铬电池进行放电,直到放电完毕,则把其置为低电平,关闭放电电路并对镍铬电池进行充电。SDA和SCL是P87LPC767的异步串行通讯总线的数据线和时钟线,它们和显示电路中P87LPC764的SDA和SCL相连接,以使P87LPC767作为从机和P87LPC764进行通讯,从而把电池的各种信息(结构参数和实时参数)传输到P87LPC764上,再由液晶显示器进行显示。两个跳线是P87LPC767作为从机和P87LPC764进行通讯时的地址选择信号,它们可连接或断开输入到端口的信号,它们的组合状态00,01,10,11分别代表从机的地址00,01,10,11,以便主机和从机通讯时发出地址信号,之后从机通过查询作出回应,并向主机发送信息。
以P87LPC764为核心构成的信息显示模块可通过I2C总线与4路充电管理部分的P87LPC767进行通讯(每个P87LPC764与4个P87LPC767接口,每一套电路负责一组电池的充电管理)。当系统采集到电池的实时参数和结构参数后,即可通过LCD进行中文模式的信息显示(要显示的汉字和字符字库存储在24C16中,P87LPC764通过I2C总线对其进行调用);同时利用P87LPC764的TXD、RXD口线提供给RS232接口,从而完成与PC管理计算机的相连,最终完成对电池的集散式管理。1.3 智能充电器的信息显示
2 智能充电器的软件设计
图5是该智能管理系统的程序流程图。该系统除了完成充放电控制外,还提供过流保护、过压保护、过温保护、蜂鸣报警等功能。
在整个过程中,该电路将始终实时检测电池信息,若有异常情况发生,则立即利用中断信号终止正在进行的充电或者放电过程,关断充放电回路,同时进行报警并提示报警原因。程序开始执行后,首先进行初始化并检测电池电压、电流、温度等信息是否正常。如正常则进入下一步,否则报警并关闭电路。如果电池电压在充电终止电压和放电终止电压之间,说明电池既可充电也可放电。此时电路将判断接上充电机还是接上负载,以进行相应的充电和放电。如果两者都没有接,则循环检测过程。若电池电压已经到达充电终止电压,则等待负载的接入进行放电;同样若电池电压己经达到放电终止电压,则等待充电机的接入以进行充电。
3 结束语
该智能电池充电器能有效地解决电池和充电器的兼容问题,从而避免了因电池化学特性不同而给电池充电造成的各种麻烦。另外,除了对电池电压的检测外,为了更好的保护电池,该充电器充电时还可对电池的温度及充电时间进行监测以作为辅助或后备保护方案。