1 天线的设计
天线的介质基板选取RT Duroid 5880,介电常数为2.17,厚度为1.27 mm。天线如图1所示。设计同时采用了以下两种不同的技术来改善天线在较宽的频带范围上的VSWR值,(1)采用一种新型的微带馈线结构叫有损微带结构(DMS),该平面结构通过对微带馈线的变形来降低低频段的频率,而对原天线的增益和辐射方向图影响不大。(2)在地板上靠近辐射贴片的馈源端采用平滑的斜角处理,能较好地展宽高频段的可用频率。斜角处理使得共面波导到辐射贴片之间能实现较好的平滑转换。让地板与辐射贴片之间更好地互耦,而产生谐振,以实现较宽频带范围上的阻抗匹配。因为微带的不连续性会导致近场不必要的反射,而反射引起的反射损耗会导致能量的损失,减弱了天线远场辐射。即地板上的平滑斜角处理有效地避免了连接处尖锐的突起和馈电端与地板之间的不连续性,同时也较好地实现共面波导与辐射部分的阻抗匹配。
天线辐射贴片上的斜角约取17.3°,地板上的斜角约取18.7°。仿真验证了该处理能使天线在较宽的频带范围里实现阻抗的匹配,且VSWR<2。另一方面是对地板上的微带馈线采用有损微带技术(DMS)可较好地拉低低频段的频率,DMS技术在以往的UWB天线设计里有不同的程度的应用,像减小天线的矩形辐射贴片的尺寸,将其作为微带天线的一种调谐技术。
文中DMS的主要作用是用来增加低频段天线的电长度,使该结构成为辐射贴片单元的一部分,而不仅仅是馈线的一部分。因此,该结构起到了缝隙辐射的作用,以实现天线在更低的频段上能产生谐振,也就是通过DMS结构和辐射贴片的相互谐振来拉低整个天线低频端的频率,对比文献中的单极子天线,本文设计的天线可展宽天线有效带宽可超过1GHz,该有损结构离微带馈线的边约为0.3mm,长约19mm,宽约0.25mm。辐射贴片长约29.5 mln、宽约32 mm,地板长约25 mm。
同时为实现陷波特性而引入半波长的谐振结构,在辐射贴片上开L形槽,其长度约为需要抑制频率对应波长的八分之一,使得天线在该点附近的阻抗失配,驻波比显著增加。L形槽的关系可用式(1)表示
其中,fnotched为陷波中心频率;C为光速;Ls为L形槽的总长;εre为相对有效介电常数。通过式(1)可求出L形槽的初始尺寸,然后可在仿真中进行优化,宽约1.2 mm、长约26 mm。
2 结果
仿真优化设计使用HFSS11软件,通过优化,在设计过程中发现低频段的辐射特性主要取决于共面波导上的DMS的设计,见图2所示,该图为不同频率下天线上的电流分布。文中天线的仿真分析集中在2.2 GHz、1O GHz一低一高的两频段。
从图2中可以看到,在2.2 GHz时DMS上的电流分布密度比在10 GHz时的更稠密,意味着该结构在2.2 GHz时比10 GHz时辐射更为强烈。而且带DMS结构的馈线远比辐射贴片上的电流密度稠密。所以,在改善天线低频端特性上,馈线上的DMS结构扮演着非常重要的角色,相当于辐射贴片的一部分。
在图3中,天线的VSWR曲线在2~12 GHz的整个频段上,除在4.9~5 GHz范围外,整体数值在2以下,应用频带较宽,L型槽起到了陷波的作用。在图4中,为该天线的S11参数图,从图中可以明显的看到整个频段除4.9~5 GHz外,整条曲线都在-10 dB以下,与天线的VSWR曲线反映的较为一致。
除了有较好的匹配外,带DMS结构和平滑斜角处理的UWB天线的辐射方向图在谐振频率上近似为全向椭圆,辐射方向图相当于全向天线。图5为天线在2.2、10 GHz时的E面辐射方向图和增益3D图,从图中可以看出天线在2.2 GHz时,VSWR值约为1.08,其增益可达4.09 dB;而在10 GHz时天线的VSWR值约1.4,其增益可达6.13 dB。天线VSWR值较低时,其天线增益也相对低一些;当天线VSWR值稍高时,其对应增益也就相应的高一些。
3 结束语
文中设计了一种新型的平面UWB单极子天线,该天线上通过采用了DMS技术来改善该天线频带的低频段的特性,而且对天线原有的辐射方向图和增益影响不大。该方法将DMS结构作为辐射贴片的一部分,有效地增强了天线在低频端的辐射效率,相当于延展了天线在低频端的电长度。另外,斜角处理技术则使辐射贴片在高频段的更高频率上更容易被匹配,以此来展宽其高频端的频率。使得整个天线的可用频带超过FCC规定的UWB频段将近3 GHz,而且在辐射贴片上加载L型槽线,可实现陷波特性。该天线结构简单、应用频带宽,增益较高,有广阔的应用前景。