1 经验模式分解( EMD) 和IMF
HHT 方法包含两个主要步骤:
( 1) 对原始数据进行经验模式分解( EMD) ,把数据分解为满足Hilbert 变换要求的n 阶本征模式函数( IMF) 和残余函数之和。
( 2) 对每一阶IMF 进行Hilbert 变换,得到瞬时频率,从而求得时频图。
函数必须关于时间轴局部对称,且其过零点与极值点个数相同。此类函数被称为固有模态函数( Int rinsicMode Function,IMF) 。
经验模式分解方法能把非平稳、非线性信号分解成一组稳态和线性的序列集,即本征模式函数。根据Huang 的定义,每一阶的IMF 应满足两个条件:
( 1) 数据的极值点和过零点交替出现,且数目相等或最多相差一个任何点上;
( 2) 在任何点上,有局部最大值和局部最小值定义的包络的均值必须是零。
其筛选算法如下:
( 1) 对于输入信号x ( t) ,确定x ( t) 所有极值点。
( 2) 用三次样条函数对极大点和极小点分别进行拟合得到x ( t) 的上下包络线。
( 3) 用原始数据序列减去上下包络线的均值。
平均曲线:
细节信号:
( 4) 通常s( t ) 还不满足IMF 的条件,需重复进行以上步骤,进行迭代处理,H uang 给出的迭代停止准则为:
SD 是筛选门限值,一般取值为0. 2~ 0. 3,若计算SD 小于这个门限值,筛选迭代将会结束。
经过n 次迭代满足停止准则后得到的sn ( t) 即为有效IMF,剩余信号则进入下一轮筛选过程。
经过多次筛选后,原始数据序列被分解为一组IMF 分量和一个残余量,得到的IMF 都是平稳的,通过Hilbert 变换得到的结果能够很好地分析非线性非平稳的信号。
2 传统EMD 的不足与缺陷
当信号的时间尺度存在跳跃性变化时,对信号进行EMD 分解,会出现一个IMF 分量包含不同时间尺度特征成分的情况,称之为模态混叠。
模态混叠的出现一方面和EMD 的算法有关,另一方面也受原始信号频率特征的影响。
Huang 曾经提出了中断检测的方法来解决模态混叠现象,即直接对结果进行观察,如果出现混叠则重新分解,这种方法需要人为后验判断。
重庆大学的谭善文提出了多分辨率的EMD 思想,对每一个IMF 规定一个尺度范围来解决模态混叠,但是这种方法牺牲了EMD 良好的自适应性。
3 引入正态分布白噪声的EEMD
为了更好地解决模态混叠问题,Huang 提出了EEMD,这是一种噪声辅助信号处理方法。
降噪技术的目的是将噪声从信号中去除,不过在一些情况下,可以通过加入噪声的方法来进行辅助分析,这钟方法就称为噪声辅助信号处理( NADA) ,噪声辅助信号处理方法最常见的就是预白化。在信号中加入白噪声来平滑脉冲干扰,被广泛用于各种信号分析领域。
在EMD 方法中,得到合理IMF 的能力取决于信号极值点的分布情况,如果信号极值点分布不均匀,会出现模态混叠的情况。为此,Huang 将白噪声加入待分解信号,利用白噪声频谱的均匀分布,当信号加在遍布整个时频空间分布一致的白噪声背景上时,不同时间尺度的信号会自动分布到合适的参考尺度上,并且由于零均值噪声的特性,经过多次平均后,噪声将相互抵消,集成均值的结果就可作为最终结果。
EEMD 步骤如下:
( 1) 向信号加入正态分布白噪声。
( 2) 将加入白噪声的信号分解成各IMF 分量。
( 3) 重复步骤( 1) ,( 2) ,每次加入新的白噪声序列。
( 4) 将每次得到的IMF 集成均值作为最终结果。
EMMD 算法流程如图1 所示。
4 系统功能介绍和仿真实验分析
为了验证EEMD 方法的改进之处,利用Mat lab 的GU I 工具设计了简单直观的仿真系统。
此系统实现的功能是,对输入信号进行传统EMD分解和EEMD 分解,可显示信号分解后的各个模态函数IMF 分量及其瞬时频率,并能对Hilbert 时频谱进行刻画。
系统界面如图2 所示。
参数设置功能 可自由设置加入白噪声的方差和噪声组数目( 范围1~ 500) ,当方差设置为0,噪声组数目选择为1 时,该系统实现传统EMD 分解的功能。
EEMD 分解功能 对信号进行加入上述设定白噪声EEMD 分解,并刻画出输入信号的Hilbert 时频谱。
显示IMFs 功能 可通过弹出FIG 的形式显示对信号分解后的各IMF 分量及瞬时频率。
仿真实验结果如下:
首先对多分量理想样本信号进行分解,信号构成如下:
其中,归一化频率为:
EMD 分解方法应将包含4 个频率分量的信号分解为4 个包含单一频率信息的IMF 分量。
分解结果如图3 所示。
可以看到,对于无干扰的理想信号,传统EMD 分解方法具有非常好的效果,清晰地将4 个频率分量在Hilbert 谱上显示了出来。
对一组存在中断干扰的实际信号进行分解,结果如图4~ 图6 所示。
通过频谱图可以看到,低频分量混杂在一起,难以分辨。
对EEMD 分解方法进行分析,加入了100 组标准差为0. 2 的高斯白噪声,结果如图7,图8 所示。
通过Hilbert 谱的比较可以看出,分解结果有了较大改进。
5 结 语
EEMD 以噪声辅助信号处理原理为基础,通过加入小幅度的白噪声来均衡信号,有效地解决了模态混叠现象,利用高斯白噪声零均值的特性,使真实信号得到了保留,是对传统EMD 分析方法的巨大改进。