选择电容
先让我们看看陶瓷电容。这种电容由于尺寸、成本和性能方面的优势成为便携式应用产品的理想选择,也因开关频率下的等效串联电阻(ESR)和等效阻抗很低而非常适合于高频应用。低ESR使输出电压纹波被减至最小,低阻抗产生出色的滤波特性。而Y5V类电介质电容的温度系数很差,85 ?C时可能下降80%,一般不建议用于便携式应用,故本节重点讨论X5R/X7R电容。
图1显示了10μF,6.3V,X5R陶瓷电容外壳尺寸的变化历史。外壳尺寸较小的主要好处在于节省开关的占位面积,降低总体解决方案的高度。目前,主流移动电话生产商在电话中使用的元件之高度最大限值为1.2mm。随着电话模型越来越纤巧,这个限值将进一步减小。现在的陶瓷电容已能够很好地满足这些要求。
那么,系统设计人员还需要了解除陶瓷电容之外的东西吗?绝对需要!例如,在选择陶瓷电容的电容值及其外壳尺寸之余,必须考虑到它的直流偏置效应。电容选择不正确可能对系统的稳定性造成严重破坏。直流偏置效应通常出现在铁电电介质(2类)电容中,如X5R、X7R、及Y5V类电容。
陶瓷电容的基本计算公式如下:
C=K×[(S×n)/t]
这里,C=电容量,K=介电常数,n=介电层层数,S=电极面积,t=介电层厚度
影响直流偏置的因子有K、介电层厚度、额定电压的比例因子,以及材料的晶粒度。电容上的电场使内部分子结构产生“极化”,引起K常数的暂时改变,不幸的是,是变小。电容的外壳尺寸越小,由直流偏置引起的电容量降量百分比就越大。若外壳尺寸一定,则直流偏置电压越大,电容量降量百分比也越大。系统设计人员为节省空间用0603电容代替0805电容时,必须相当谨慎――除非用预定类型的电容对转换器进行了测试。规格说明书中推荐的是0603电容。
图2所示为在某典型便携式应用产品的使用环境温度范围内,直流偏置对几种不同电容的影响。查看图中的直流偏置特性,可看到,厂商A生产的10μF,6.3V 0603电容在1.8V 直流偏置及-30°C下的电容量值为5.75μF。需注意电容器和电容量之间的区别。电容量是从应用的角度看到的电容的实际值。厂商C生产的相同电容器在同样条件下的电容量值为3.5μF。事实上,厂商A的4.7μF电容差不多与厂商C的10μF电容一样好。
因此,请记住应该向厂商索取在应用的预定直流偏置电压下的电容值曲线。例如,采用2.5V输出电压时,系统设计人员必须查看2.5V时的直流偏置。使开关稳定性最好的最小电容值可在开关的规格说明书中查到。在确定用于便携式电源解决方案材料清单(BOM)的电容双重来源时,厂商间的差异也必须考虑到。
上述决策不应该留给采购人员,除非他们能给出很好的建议。电容器生产商往往喜欢出示单独的曲线,如电容量随温度的变化曲线,另一条是电容量随直流偏置的变化曲线。不过,他们不会同时给出两条,但实际应用恰恰需要两条。应该记住向生产厂商索要系统最常用电压的综合曲线。
例如,基带内核微处理器的常用电压有1.3V、1.5V和1.8V。I/O和硬盘驱动器使用1.8V、2.5V或3.3V。RF功率放大器电源的输出电压范围为0.8 到3.4V。
选择输入电容时,必须考虑到输入电压范围。对锂离子电池而言,这个范围为3 到 4.3V,当插入充电器时,可高达5.5V。
从系统的角度来看,阻抗/ESR与频率的关系曲线也很重要。用于2MHz开关的电容可能并不适合于5MHz开关。开关设计中,电容的谐振频率是一关键规格参数。当开关频率接近输出电容的谐振频率时,输出电压纹波最小。
例如,4.7μF和10μF 0603电容的谐振频率范围都为2 到 3MHz。但1μF 0603电容的谐振频率在6MHz左右,1μF 0402电容的近10MHz。工作频率高于谐振频率时,阻抗实际上是电感性的。如果没有正确的补偿,将产生稳定性问题,且开关的纹波增加。最后但并非不重要的是,陶瓷电容的生产容限是在1 kHz频率、1V rms或0.5V rms电压下规定/测试的,但实际应用的条件差异非常大。在较低的rms电压下,电容额定值要小得多。对一个典型的开关,纹波电压范围为5到30mV。