就这个示例而言,由于超过带宽的 RFI/EMI 干扰将被消除,因此固有噪声较低。图 5.8和图 5.9 显示了具有和不具有带宽限制功能的典型数字示波器的固有噪声。图 5.10 显示了采用 10x 探针示波器的固有噪声相当高。
图 5.8:具有 1x 探针和带宽限制功能的示波器固有噪声
图 5.9:具有 1x 探针,但不具备带宽限制功能的示波器固有噪声
图 5.10:具有 10x 控针,但不具备带宽限制功能的示波器固有噪声
另外,当开展噪声测量工作时,必须考虑示波器的耦合模式。通常情况下,在一个数值较高的 DC 电压下工作才会产生噪声信号,因此宽带测量时,应采用 AC 耦合模式。例如,1mVpp 噪声信号在 2V 的 DC信号时,才能被触发。因此,在 AC 耦合模式下,AC 信号被剔除,从而获得了最高的增益。但是,需要特别说明的是,AC 耦合模式不能用于测量 1/f 噪声。这是因为在 AC 耦合模式下,带宽的截止频率通常较低,约为 10 Hz。当然,该截止频率也会因耦合模式的不同而有所差别,但是,关键问题是这一较低的截止频率对大部分的 1/f 噪声测量而言过高。一般而言,1/f的大小从 0.1 至 10 Hz 不等。因此,进行 1/f 的测量工作时,通常采用具有外部带通滤波器的 AC 耦合模式。图 5.11 对使用示波器进行噪声测量的通用指南作了总结。
图 5.11:使用示波器进行噪声测量的通用指南
噪声测量设备:频谱分析仪
频谱分析仪是进行噪声测量的功能强大的工具。一般说来,频谱分析仪能够显示功率(或电压)与频率之间的关系,
其与噪声谱密度曲线相类似。实际上,一些频谱分析仪具有特殊的运行模式,这种运行模式使测量结果以频谱密度单位(即 nV/rt-Hz)的形式,直接显示出来。在其他情况下,测量结果必须乘以一个校正系数,从而将相关计量单位转化成频谱密度单位。
频谱分析仪和示波器一样,既有数字型的,也有模拟型的。模拟频谱分析仪生成频谱曲线的一种方法是:扫描各种频率下的带通滤波器,同时标绘出滤波器的测量输出值。另一种方法是运用超外差接收技术,该技术在各种频率下完成对本地振荡器的扫描。然而,数字频谱分析仪则采用快速傅里叶变换来产生频谱(常常与超外差接收技术配合使用)。
虽然所使用的频谱分析仪型号各异,但是一些主要参数仍需予以考虑。起始和终止频率表明了带通滤波器被扫描的频率范围。分辨率带宽是带通滤波器在频率范围内被扫描的宽度。降低分辨率带宽,则能提升频谱分析仪处理在离散频率时信号的能力,同时,将延长扫描时间。图 5.13 说明了扫描滤波器的运行情况,图 5.14 和图 5.15 显示了同一频谱分析仪采用不同分辨率带宽时,所得出的两种测量结果。在图 5.14 中,由于分辨率带宽被设置得非常小,从而使离散频率分量(即 150 Hz)得到了妥善处理。另一方面,在图 5.15 中,由于分辨率带宽被设置得非常大,使离散频率分量(即 1200 Hz)未能得到妥善处理。
图 5.12:频谱分析仪运行情况
图5.13:针对高分辨率信号选择的分辨率带宽
图 5.14:针对低分辨率信号选择的分辨率带宽
在图 5.13 和图 5.14 中,频谱的大小以分贝毫瓦 (dBm) 为单位表示,这是频谱分析仪常用的测量单位。一分贝毫瓦是指相对于一毫瓦,用分贝来计量的功率比值。就本例中的频谱分析仪而言,分贝毫瓦的测量也要事先假设输入阻抗为 50 欧姆。对大多数的频谱分析仪而言,当输入阻抗选择为 1M 欧姆时,情况也是如此。图 5.15列出了将分贝毫瓦转化为电压有效值所采用公式的推导过程。在图 5.16 中,该公式用于计算在图 5.13 – 5.14 中列出的测量结果 —— –10 dBm信号的电压有效值。
从图 5.13 – 5.14 中,我们可以看出,当分辨率带宽降低时,固有噪声则从 –87 dBm 增加到 –80 dBm。另一方面,当分辨率带宽发生改变时,频率处于 67 kHz 和 72 kHz 时的信号幅度并未发生改变。固有噪声之所以受分辨率带宽的影响,是因为其为热噪声,因此,带宽的提高也增加了热噪声总量。另外,由于信号波形为正弦波曲线,而且不管带宽如何变化,带通滤波器内部的振幅都会保持恒定,因此,频率处于 67 kHz 和 72kHz 时的信号幅度并不会受分辨率带宽的影响。因为我们必须清楚在频谱密度计算中不应该包含离散信号,所以,有关噪声分析方面的特性应引起我们足够的重视。比如,当测量运算放大器的噪声频谱密度时,您会发现频率在 60 Hz(功率上升线)时出现的一个离散信号。因为这个 60 Hz 的信号并非频谱密度,而是一个离散信号,所以它并未包含在功率噪声频谱密度曲线中。
图 5.15:将分贝毫瓦转化为电压有效值
图 5.16:将分贝毫瓦转化为电压有效值