对于常见的ARM处理器,它们的GPIO口基本上可以配置为输入模式、输出模式、开漏或推挽模式,对于新唐的M0来说,所有I/O都处于准双端模式;对于NXP的M3处理器来说,GPIO可以配置为上拉、下拉、开漏或者中继模式。
开漏输出与推挽输出的区别:
推挽输出:推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。可以输出高,低电平,连接数字器件,正常的拉出/灌入电流为4mA,短时间极限值可以达到40mA,但不是每个引脚都能输出这么多
开漏输出:输出端相当于三极管的集电极。要得到高电平状态需要上拉电阻才行。适合于做电流型的驱动,其吸收电流的能力相对强(一般20mA以内).
开漏电路概念中提到的“漏”就是指MOS FET的漏极。同理,开集电路中的“集”就是指三极管的集电极。开漏电路就是指以MOS FET的漏极为输出的电路。一般的用法是会在漏极外部的电路添加上拉电阻。完整的开漏电路应该由开漏器件和开漏上拉电阻组成。
组成开漏形式的电路有以下几个特点:
1.利用 外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up,MOSFET到GND。IC内部仅需很小的栅极驱动电流。如图1。
2.可以将多个开漏输出的Pin,连接到一条线上。形成“与逻辑”关系。如图,当PIN_A、PIN_B、PIN_C任意一个变低后,开漏线上的逻辑就为0了。这也是I2C,SMBus等总线判断总线占用状态的原理。
3.可以利用改变上拉电源的电压,改变传输电平。IC的逻辑电平由电源Vcc1决定,而输出高电平则由Vcc2决定。这样我们就可以用低电平逻辑控制输出高电平逻辑了。
4.开漏Pin不连接外部的上拉电阻,则只能输出低电平(因此对于经典的51单片机的P0口而言,要想做输入输出功能必须加外部上拉电阻,否则无法输出高电平逻辑)。
问题集锦
一、准双向IO结构的特点是
1输出结构类似OC门,输出低电平时,内部NMOS导通,驱动能力较强(800uA);输出高电平靠内部上拉电阻,驱动能力弱(60uA)。
2永远有内部电阻上拉,高电平输出电流能力很弱,所以即使IO口长时间短路到地也不会损坏IO口
(同理,IO口低电平输出能力较强,作低电平输出时不能长时间短路到VCC)
3作输入时,因为OC门有"线与"特性,必须把IO口设为高电平(所以按键多为共地接法)
4作输出时,输出低电平可以推动LED(也是很弱的),输出高电平通常需要外接缓冲电路(所以LED多为共阳接法)
5软件模拟OC结构的总线反而比较方便-----例如IIC总线
* OC门:三极管的叫集电极开路,场效应管的叫漏极开路,简称开漏输出。具备"线与"能力,有0得0。
*为什么设计成输出时高电平弱,低电平强----是考虑了当年流行的TTL器件输入
二、IO不同模式的区别?
简单的说:
“准双向IO口”在读前必须先用写指令置"1",才能读入;写则无须此步.
“真正的双向IO口”可直接读写.
“三态IO口”有高,低电平,高阻状态,高阻本人理解:相当此脚与内部电路断开.