下面让我们从另外一个角度来考虑如何点亮一颗LED。
先看看我们的硬件结构是什么样子的。
我手上的单片机板子是电子工程师之家的开发的学习板。就以它的实际硬件连接图来分析吧。如下图所示
一般的LED的正常发光电流为10~20MA而低电流LED的工作电流在2mA以下(亮度与普通发光管相同)。在上图中我们可知,当Q1~Q8引脚上面的电平为低电平时,LED发光。通过LED的电流约为(VCC - Vd)/ RA2 。其中Vd为LED导通后的压降,约为1.7V左右。这个导通压降根据LED颜色的不同,以及工作电流的大小的不同,会有一定的差别。下面一些参数是网上有人测出来的,供大家参考。
红色的压降为1.82-1.88V,电流5-8mA,
绿色的压降为1.75-1.82V,电流3-5mA,
橙色的压降为1.7-1.8V,电流3-5mA
兰色的压降为3.1-3.3V,电流8-10mA,
白色的压降为3-3.2V,电流10-15mA,
(供电电压5V,LED直径为5mm)
74HC573真值表如下
通过这个真值表我们可以看出。当OutputEnable引脚接低电平的时候,并且LatchEnable引脚为高电平的时候,Q端电平与D端电平相同。结合我们的LED硬件连接图可以知道LED_CS端为高电平时候,P0口电平的变化即Q端的电平的变化,进而引起LED的亮灭变化。由于单片机的驱动能力有限,在此,74HC573的主要作用就是起一个输出驱动的作用。需要注意的是,通过74HC573的最大电流是有限制的,否则可能会烧坏74HC573这个芯片。
上面这个图是从74HC573的DATASHEET中截取出来的,从上可以看出,每个引脚允许通过的最大电流为35mA 整个芯片允许通过的最大电流为75mA。在我们设计相应的驱动电路时候,这些参数是相当重要的,而且是最容易被初学者所忽略的地方。同时在设计的时候,要留出一定量的余量出来,不能说单个引脚允许通过的电流为35mA,你就设计为35mA,这个时候你应该把设计的上限值定在20mA左右才能保证能够稳定的工作。
(设计相应驱动电路时候,应该仔细阅读芯片的数据手册,了解每个引脚的驱动能力,以及整个芯片的驱动能力)
了解了相应的硬件后,我们再来编写驱动程序。
首先定义LED的接口
#define LEDP0
然后为亮灭常数定义一个宏,由硬件连接图可以,当P0输出为低电平时候LED亮,P0输出为高电平时,LED熄灭。
#define LED_ON() LED = 0x00//所有LED亮
#define LED_OFF() LED = 0xff//所有LED熄灭
下面到了重点了,究竟该如何释放CPU,避免其做延时空等待这样的事情呢。很简单,我们为系统产生一个1MS的时标。假定LED需要亮500MS,熄灭500MS,那么我们可以对这个1MS的时标进行计数,当这个计数值达到500时候,清零该计数值,同时把LED的状态改变。
unsigned int g_u16LedTimeCount = 0 ; //LED计数器
unsigned char g_u8LedState = 0 ; //LED状态标志, 0表示亮,1表示熄灭
void LedProcess(void)
{
if(0 == g_u8LedState)//如果LED的状态为亮,则点亮LED
{
LED_ON() ;
}
else //否则熄灭LED
{
LED_OFF() ;
}
}
void LedStateChange(void)
{
if(g_bSystemTime1Ms) //系统1MS时标到
{
g_bSystemTime1Ms = 0 ;
g_u16LedTimeCount++ ; //LED计数器加一
if(g_u16LedTimeCount >= 500)//计数达到500,即500MS到了,改变LED的状态。
{
g_u16LedTimeCount = 0 ;
g_u8LedState= ! g_u8LedState ;
}
}
}
上面有一个变量没有提到,就是g_bSystemTime1Ms 。这个变量可以定义为位变量或者是其它变量,在我们的定时器中断函数中对其置位,其它函数使用该变量后,应该对其复位(清0) 。
我们的主函数就可以写成如下形式(示意代码)
void main(void)
{
while(1)
{
LedProcess() ;
LedStateChange() ;
}
}
因为LED的亮或者灭依赖于LED状态变量(g_u8LedState)的改变,而状态变量的改变,又依赖于LED计数器的计数值(g_u16LedTimeCount ,只有计数值达到一定后,状态变量才改变)所以,两个函数都没有堵塞CPU的地方。让我们来从头到尾分析一遍整个程序的流程。
程序首先执行LedProcess() ;函数
因为g_u8LedState 的初始值为0 (见定义,对于全局变量,在定义的时候最好给其一个确定的值)所以LED被点亮,然后退出LedStateChange()函数,执行下一个函数LedStateChange()
在函数LedStateChange()内部首先判断1MS的系统时标是否到了,如果没有到就直接退出函数,如果到了,就把时标清0以便下一个时标消息的到来,同时对LED计数器加一,然后再判断LED计数器是否到达我们预先想要的值500,如果没有,则退出函数,如果有,对计数器清0,以便下次重新计数,同时把LED状态变量取反,然后退出函数。
由上面整个流程可以知道,CPU所做的事情,就是对一些计数器加一,然后根据条件改变状态,再根据这个状态来决定是否点亮LED。这些函数执行所花的时间都是相当短的,如果主程序中还有其它函数,则CPU会顺次往下执行下去。对于其它的函数(如果有的话)也要采取同样的措施,保证其不堵塞CPU,如果全部基于这种方法设计,那么对于不是非常庞大的系统,我们的系统依旧可以保证多个任务(多个函数)同时执行。系统的实时性得到了一定的保证,从宏观上看来,就是多个任务并发执行。
好了,这一章就到此为止,让我们总结一下,究竟有哪些需要注意的吧。
(1) 无论什么时候我们都要以实际应用的角度去考虑程序的编写。
(2) 无论什么时候都不要让CPU白白浪费等待,尤其是延时(超过1MS)这样的地方。
(3) 设计相应驱动电路时候,应该仔细阅读芯片的数据手册,了解每个引脚的驱动能力,
以及整个芯片的驱动能力
(4) 最重要的是,如何去释放CPU(参考本章的例子),这是写出合格程序的基础。
附完整程序代码(基于电子工程师之家的单片机开发板)
#include
sbit LED_SEG= P1^4;//数码管段选
sbit LED_DIG= P1^5;//数码管位选
sbit LED_CS11 = P1^6;//led控制位
sbit ir=P1^7;
#define LED P0 //定义LED接口
bitg_bSystemTime1Ms = 0 ; // 1MS系统时标
unsigned intg_u16LedTimeCount = 0 ; //LED计数器
unsigned char g_u8LedState = 0 ; //LED状态标志, 0表示亮,1表示熄灭
#define LED_ON() LED = 0x00 ;//所有LED亮
#define LED_OFF() LED = 0xff ;//所有LED熄灭
void Timer0Init(void)
{
TMOD &= 0xf0 ;
TMOD |= 0x01 ; //定时器0工作方式1
TH0= 0xfc ; //定时器初始值
TL0=0x66 ;
TR0= 1 ;
ET0= 1 ;
}
void LedProcess(void)
{
if(0 == g_u8LedState)//如果LED的状态为亮,则点亮LED
{
LED_ON() ;
}
else //否则熄灭LED
{
LED_OFF() ;
}
}
void LedStateChange(void)
{
if(g_bSystemTime1Ms) //系统1MS时标到
{
g_bSystemTime1Ms = 0 ;
g_u16LedTimeCount++ ; //LED计数器加一
if(g_u16LedTimeCount >= 500)//计数达到500,即500MS到了,改变LED的状态。
{
g_u16LedTimeCount = 0 ;
g_u8LedState= ! g_u8LedState ;
}
}
}
void main(void)
{
Timer0Init() ;
EA = 1 ;
LED_CS11 = 1 ; //74HC595输出允许
LED_SEG = 0 ;//数码管段选和位选禁止(因为它们和LED共用P0口)
LED_DIG = 0 ;
while(1)
{
LedProcess() ;
LedStateChange() ;
}
}
void Time0Isr(void) interrupt 1
{
TH0= 0xfc ; //定时器重新赋初值
TL0=0x66 ;
g_bSystemTime1Ms = 1 ; //1MS时标标志位置位
}