引言
模拟示波器由于无法高效地观察实验结果、数据处理功能弱等缺点,已逐渐被数字示波器所取代,但数字示波器价格昂贵。虚拟仪器是在通用计算机平台上,用户利用软件根据自已的需求定义设计仪器的测量功能,其可以大大拓展传统仪器的功能,降低仪器成本,并可通过软件实现数据的复杂分析、运算和海量存储等功能。LabWindows/CVI是1种常用的虚拟仪器设计软件,为用户提供了功能强大的虚拟仪器系统开发平台。为此,本文以LabWindows/CVI为开发平台,利用FPGA中嵌入的NiosⅡ软核构成的SOPC系统,设计一种双通道虚拟示波器,以达到一般传统示波器的性能指标。
1 虚拟示波器硬件电路设计
1.1 虚拟示波器数据采集通道电路设计
为减少虚拟示波器对被测电路的影响,要求虚拟示波器数据采集通道的输入阻抗在1MΩ以上,因此必须设计合适的衰减器和可控增益的放大器。虚拟示波器数据采集通道的原理方框图如图1所示。图1中,虚拟示波器的2个通道完全对称,且相互独立。从探头进来的信号经过衰减网络,获得合适的信号强度,进行AD/DC切换开关后,送到可控增益放大器,将不同幅度的信号放大为幅度大致相同的信号,经高速A/D转换获得两路独立的数字信号,同时触发电路完成触发功能,使波形能够平稳地显示。
1.1.1 衰减与AD/DC转换电路
图2为虚拟示波器的衰减与AD/DC转换电路图。
图2中,R1、R2、R3、C1 和R4、C2组成1:10的分压网络,通过CPU控制三极管Q1、Q2 和继电器K1、K2 分别控制进行1/10的衰减与AD/DC切换控制。
1.1.2 可控增益放大器
虚拟示波器需设计宽范围可调节的增益放大电路器,以实现10mV~±200V范围内的输入电压采样。本系统采用模拟多路器切换运放的反馈电阻,以达到改变增益的目的,其电路图如图3所示。
图3中,U1内部包含两通道JFET高输入阻抗的运放,前级为跟随器,以满足示波器的高输入阻抗要求,第2级为可控增益放大器,由模拟多路器和运放共同构成。
1.1.3 A/D转换电路
虚拟示波器的A/D 转换器采用Linear 公司的LTC2289,它的采样频率可达80MHz,有2个独立通道,可选内部参考或外部参考。本文选用内部参考。
1.2 虚拟示波器信息处理部分硬件设计
虚拟示波器信息处理部分主要包括FPGA 系统和USB通信部分,其组成方框图如图4所示。
图4中,虚拟示波器模拟输入通道的模拟信号经A/D转换后获得数字信号,经过1个数据缓冲器输入到FPGA,FPGA通过逻辑电路和NiosⅡ管理将数据进行存储、上传等。SRAM用于缓存采样数据;FLASH用于存储NiosⅡ应用程序,并实现系统上电时将程序加载至SDRAM中。
系统选择的USB接口芯片CY7C68001为USB2.0标准控制器,其可工作在高速或全速状态,支持4个可配置共享4KBFIFO空间的端点,并具有一个标准8位或16位主机接口,非常适合做高速USB接口。
3 虚拟示波器上位机软件设计
3.1 虚拟示波器USB通信的封装
虚拟示波器上位机程序采用LabWindows/CVI开发,其本身并不支持USB通信,因此采用了调用外部模块的方法。采用VC++编写程序,将USB通信底层函数进行封装,编译成DLL,再供LabWindows/CVI进行调用。为此,将动态链接库的头文件和DLL文件导入进工程,生成1个FP的驱动器,这时虚拟示波器系统就可以直接调用DLL里面提供的函数。
3.3 虚拟示波器面板程序的开发
图8中,用户对虚拟示波器面板上的垂直幅度调节、水平宽度调节等按钮操作时,系统会将相应的操作命令传送给下位机,并由下位机调节垂直幅度和水平时基等,从而实现用户对虚拟示波器系统的操作。
4 测试结果
采用FPGA处理器和ALTERA公司的NiosⅡ软核完成虚拟示波器系统设计后,进行了多次测试,其性能指标如表1所示。
由表1可知,该虚拟示波器达到了一般模拟示波器的指标。然而由于本系统采用虚拟仪器技术,在功能上增加单次采样、波形保存等功能,因此与普通示波器相比,其成本低廉,操作界面更友好、简便。
5结论
本文以LabWindows/CVI为开发平台,设计了1种双通道虚拟示波器,该示波器利用FPGA 中嵌入的NiosⅡ软核构成的SOPC系统,完成虚拟示波器各模块的管理;利用嵌入式USB协议,配合片外的模拟信号处理模块,通过USB总线,完成各种波形数据的采集,经上位机软件完成了波形显示和数据分析,并实现了仪器的各种操作功能。实际测试结果表明,该虚拟示波器达到了或优于一般模拟示波器的性能指标。