因为一个项目中使用malloc函数动态分配内存400多个字节,返回为0,分配失败,查找失败原因,为堆空间不足分配导致。查看堆和栈分别设置了2K,按正常情况看应能满足分配空间,原因可能因为栈分配空间不够,导致到堆的内存空间致使,堆的内存空间过小。下面就说一下STM32的RAM区的分配,堆和栈的信息和编译信息查看。
(1)栈区(stack):由编译器自动分配和释放,存放函数的参数值、局部变量的值等,其操作方式类似于数据结构中的栈。
(2)堆区(heap):一般由程序员分配和释放,若程序员不释放,程序结束时可能由操作系统回收。分配方式类似于数据结构中的链表。
(3)全局区(静态区)(static):全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。程序结束后由系统自动释放。
(4)文字常量区:常量字符串就是存放在这里的。
(5)程序代码区(FLASH):存放函数体的二进制代码。
例如:
int a=0; //全局初始化区
char *p1; //全局未初始化区
main()
{
int b; //栈
char s[]="abc"; //栈
char *p3= "1234567"; //在文字常量区Flash
static int c =0 ; //静态初始化区
p1= (char *)malloc(10); //堆区
strcpy(p1,"123456"); //"123456"放在常量区
}
所以堆和栈的区别:
stack的空间由操作系统自动分配/释放,heap上的空间手动分配/释放,stack的空间有限,heap是很大的自由存储区。程序在编译期和函数分配内存都是在栈上进行,且程序运行中函数调用时参数的传递也是在栈上进行。
在keil的Build时会有打印(在IAR里没有看到有打印信息)
Program Size:Code=XX RO-data=XX RW-data=XX ZI-data=XX
其中:
Code: 存储到flash[Rom]中的程序代码。
RO-data:(Read Only)只读常量的大小,如const型。
RW-data:(Read Write) 初始化了可读写变量的大小。即已初始化为非零的全局变量。
ZI-data:(Zero Initialize) 没有初始化或初始化为0的可读写的变量的大小(不会被算做代码里,因为不会被初始化)。
ROM(Flash) size = Code+RO-data+RW-data;
RAM size = RW-data+ZI-data
如果一个变量被初始化为0,则该变量的处理方法与未初始化变量一样放在ZI区法域。即ARM C程序中,所有的示初始化变量都会被自动初始化为0。
总结:
1、C中的指令以及常量被编译后是RO类型数据
2、C中的未被始化或初始化为0的变量编译后是ZI类型数据。
3、C中已被初始化成非0的值的变量编译后是RW类型数据
4、以上变量指全局变量,局部变量是以上程序中在栈中分配。
ROM指:NAND Flash,Nor Flash
RAM指:PSRAM,SDRAM,DDRAM