好久没有写博客了,这一段时间主要在准备为将来找工作复习,今天我就总结一下关于如何查找数组的前K个最小值实现方法,查找前K个最小值实现方法很多,主要的思想包括如下的几种:
1、对数组进行排序,然后前K个元素就是需要查找的元素,排序的方法可以采用快速排序,但是我们知道在快速排序中如果已经是有序的数组,采用快速排序的时间复杂度是O(N^2),为了解决这种问题,通常选择随机选择一个数组值pivot作为基准,将数组分为S1 =< pivot和S2 > pivot,这样就能避免快速排序中存在的问题,或者采用随机选择三个元素,然后取中间值作为基准就能避免快速算法的最差时间复杂度,这种方法的前K个数字是有序的。
2、既然是选择前K个对象,那么就没必要对所有的对象进行排序,可以采用快速选择的思想获得前K个对象,比如首先采用快速排序的集合划分方法划分集合:S1,pivot,S2,然后比较K是否小于S1的个数,如何小于,则直接对S1进行快速排序,如果K的个数超过S1,那么对S2进行快速排序,排序完成之后,取数组的前K个元素就是数组的前K个最小值。这种实现方法肯定比第一种的全快速排序要更快速。
3、将数组转换为最小堆的情况,根据最小堆的特性,第一个元素肯定就是数组中的最小值,这时候我们可以将元素保存起来,然后将最后一个元素提升到第一个元素,重新构建最小堆,这样进行K次的最小堆创建,就找到了前K个最小值,这是运用了最小堆的特性,实质上是最小堆的删除实现方法。这种算法的好处是实现了数组的原地排序,并不需要额外的内存空间。
4、接下来的这种思想有点类似桶排序,首先给定一个K个大小的数组b,然后复制数组a中的前K个数到数组b中,将这K个数当成数组a的前K个最小值,对数组b创建最大堆,这时候再次比较数组a中的其他元素,如果其他元素小于数组b的最大值(堆顶),则将堆顶的值进行替换,并重新创建最大堆。这样遍历一次数组就找到了前K个最小元素。这种方法运用了额外的内存空间,特别当选择的K值比较大时,这种方法有待于权衡一下。
这种方法对于海量数据来说是有较好的作用,对于海量数据不能全部存放在内存中,这时候创建一个较小的数组空间,然后创建最大堆,从硬盘中读取其他的数据,进而实现前K个数据的查找。
这是比较传统的几种方法,当然还存在其他的选择方式,我在这边就不阐述了,从上面几种方法的可知,查找方法都充分运用了运用了数据结构和算法的特性。因此数据结构的灵活运用对算法的实现有很多的好处。
下面是我的实现代码,数组中前K个元素我通过打印的方式实现,并没有保存到新的数组中:
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<assert.h>
#include<time.h>
#define LEN 500000
#define K 100
/*堆的性质*/
#define LEFTSON(i) (2*(i)+1)
#define RIGHTSON(i) (2*((i)+1))
#define PARENT(i) (((i)-1)/2)
void swap(int *a, int *b)
{
assert(a != NULL && b != NULL);
if(a != b)
{
*a = *a ^ *b;
*b = *a ^ *b;
*a = *a ^ *b;
}
}
int partition(int *a, int left, int right)
{
int pivot = a[right];
int i = left;
int j = left - 1;
assert(a != NULL);
for(i = left; i < right; ++ i)
{
if(a[i] < pivot)
{
++ j;
swap(&a[i],&a[j]);
}
}
swap(&a[j + 1],&a[right]);
return (j + 1);
}
void quicksort(int *a, int left, int right)
{
int i = 0;
assert(a != NULL);
if(left < right)
{
i = partition(a,left,right);
quicksort(a, left, i - 1);
quicksort(a, i + 1, right);
}
}
int QuickSort(int *a, int size)
{
assert(a != NULL);
quicksort(a,0,size-1);
}
void quickselect(int *a, int left, int right, int k)
{
int i = 0;
assert(a != NULL && left <= k
&& left <= right && k <= right);
if(left < right)
{
i = partition(a, left, right);
if(i + 1 <= k)
quickselect(a, i + 1 , right, k);
else if(i > k)
quickselect(a, left, i - 1, k);
}
}
void QuickSelect(int *a, int size, int k)
{
assert(a != NULL);
quickselect(a, 0, size - 1, k);
}
/*最大堆*/
void max_heapify(int *a, int left, int right)
{
int tmp = 0;
int child = left;
int parent = left;
assert(a != NULL);
for(tmp = a[parent]; LEFTSON(parent) <= right;parent = child)
{
child = LEFTSON(parent);
if(child != right && a[child] < a[child + 1])
child ++;
if(tmp < a[child])
a[parent] = a[child];
else /*满足最大堆的特性,直接退出*/
break;
}
a[parent] = tmp;
}
/*创建最大堆*/
void build_maxheap(int *a, int size)
{
int i = 0;
assert(a != NULL);
for(i = PARENT(size); i >= 0 ; -- i)
max_heapify(a,i,size - 1);
}
/*最小堆的实现*/
void min_heapify(int *a, int left, int right)
{
int child = 0;
int tmp = 0;
int parent = left;
assert(a != NULL);
for(tmp = a[parent]; LEFTSON(parent) <= right; parent = child)
{
child = LEFTSON(parent);
if(child != parent && a[child] > a[child + 1])
child ++;
if(a[child] < tmp)
a[parent] = a[child];
else /*满足最小堆的特性,直接退出*/
break;
}
a[parent] = tmp;
}
/*创建最小堆*/
void build_minheap(int *a, int size)
{
int i = PARENT(size);
assert(a != NULL);
for(; i >= 0; -- i)
min_heapify(a, i, size - 1);
}
/*采用快速排序查找*/
void find_Kmin_num_1(int *a , int size, int k)
{
int i = 0;
assert(a != NULL);
QuickSort(a, size);
#if 0
for(i = 0; i < k ; ++ i)
printf("%d\t",a[i]);
printf("\n");
#endif
}
/*采用快速选择实现*/
void find_Kmin_num_2(int *a, int size, int k)
{
int i = 0;
assert(a != NULL);
QuickSelect(a, size, k);
#if 0
for(i = 0; i < k ; ++ i)
printf("%d\t",a[i]);
printf("\n");
#endif
}
/*采用最大堆实现*/
void find_Kmin_num_3(int *a, int size, int k)
{
int i = 0;
int *b = malloc(sizeof(int)*k);
assert(a != NULL && b != NULL);
for(i = 0; i < k; ++ i)
b[i] = a[i];
build_maxheap(b,k);
for(; i < size; ++ i)
{
if(a[i] < b[0])
{
b[0] = a[i];
// build_maxheap(b , k);
max_heapify(b,0,k - 1);
}
}
#if 0
for(i = 0; i < k ; ++ i)
printf("%d\t",b[i]);
printf("\n");
#endif
}
/*采用最小堆删除元素的方式实现*/
void find_Kmin_num_4(int *a ,int size, int k)
{
int i = 0;
assert(a != NULL);
build_minheap(a, size - 1);
for(i = 0; i < k; ++ i)
{
// printf("%d\t",a[0]);
/*删除a[0],释放a[size - 1 - i]*/
a[0] = a[size -1 - i];
min_heapify(a, 0, size - 2 - i);
}
// printf("\n");
}
int main()
{
int a[LEN];
int b[LEN];
int c[LEN];
int d[LEN];
int i = 0,j = 0;
clock_t _start;
double times = 0;
srand((int)time(NULL));
for(i = 0; i < LEN; ++ i)
{
a[i] = rand()%(LEN);
b[i] = a[i];
c[i] = a[i];
d[i] = a[i];
// printf("%d\t",a[i]);
}
// printf("\n");
_start = clock();
find_Kmin_num_1(a,LEN,K);
times = (double)(clock() - _start)/CLOCKS_PER_SEC;
printf("快速排序的查找需要:%f\n",times);
_start = clock();
find_Kmin_num_2(b,LEN,K);
times = (double)(clock() - _start)/CLOCKS_PER_SEC;
printf("快速选择的查找需要:%f\n",times);
_start = clock();
find_Kmin_num_3(c,LEN,K);
times = (double)(clock() - _start)/CLOCKS_PER_SEC;
printf("最大堆的查找需要:%f\n",times);
_start = clock();
find_Kmin_num_4(d,LEN,K);
times = (double)(clock() - _start)/CLOCKS_PER_SEC;
printf("最小堆的查找需要:%f\n",times);
return 0;
}
检测算法的性能:
[gong@Gong-Computer interview]$ gcc -g minKnum.c -o minKnum
[gong@Gong-Computer interview]$ ./minKnum
快速排序的查找需要:0.130000
快速选择的查找需要:0.020000
最大堆的查找需要:0.000000
最小堆的查找需要:0.010000
从结果可知,快速排序的算法效果最差,而最大堆的效果最好,最小堆的效果其次,但是最大堆运用了额外的内存空间。因此在内存空间限制的情况下,考虑最小堆是比较合适的。但是最大堆的思想确实很精妙的,运用了类似桶排序的性质。
为了说明算法能否实现前K个最小值的查找,改变数组大小为50,并打印各个方法完成的情况,查找前10个数据,实验结果如下所示:
[gong@Gong-Computer interview]$ ./minKnum
15 38 14 43 31 45 42 1 32 23 43 34 9 4 45 31 25 48 8 42 40 27 36 30 32 4 11 23 47 12 24 14 1 40 8 32 36 0 35 18 26 28 2 35 35 49 17 12 48 27
0 1 1 2 4 4 8 8 9 11
快速排序的查找需要:0.000000
1 9 4 8 4 11 1 8 0 2
快速选择的查找需要:0.000000
11 8 9 4 2 1 8 1 4 0
最大堆的查找需要:0.000000
0 1 1 2 4 4 8 8 9 11
最小堆的查找需要:0.000000
从上面的实验结果可知,四种方法都是实现了获得前K个最小元素。