软件环境:windows7旗舰版,IAR V6105(EWARM-EV-WEB-6105)
ARM芯片:飞思卡尔K60N512VMD100 (cortex-m4核心)
示例程序:飞思卡尔官方的 KINETIS512_SC
======================
最近分析了一下飞思卡尔官方提供的k60系列demo程序在IAR上的启动流程,现写一下笔记,以备以后参考。先看一下K60N512VMD100内部存储器的分布情况,飞思卡尔K60N512VMD100有512K的flash和128k的SRAM.其中:
Flash地址空间:
0x00000000--0x00080000,共512k
SRAM地址空间:
SRAM1 0x1FFF0000--0x20000000 64k
SRAM2 0x20000000--0x20010000 64k
总共的SRAM大小是128k
我要在RAM中调试代码,下面以代码的执行过程为顺序分析一下启动流程。
首先看一下源文件中提供的128KB_Ram.icf文件。*.icf文件是IAR中的分散描述文件,相当于ADS中的*.src文件或keil中的*.sct文件或GNU中的*.lds链接脚本文件。
这个文件中前面部分是各个变量的定义,关键看后面部分:
1./*128KB_Ram.icf后面部分*/
2. ***********
3.place at address mem:__ICFEDIT_intvec_start__ { readonly section .intvec };
4. place at address mem:__code_start__ { readonly section .noinit };
5.
6. place in RAM_region { readonly, block CodeRelocate };
7.
8. place in RAM_region { readwrite, block CodeRelocateRam,
9. block CSTACK, block HEAP };
10. ************
①place at address mem:__ICFEDIT_intvec_start__ { readonly section .intvec }
这段代码表示要把.intvec代码段中的只读部分放在存储空间(mem,前面已定义的名称)中__ICFEDIT_intvec_start__ 地址上,前面部分已经定义__ICFEDIT_intvec_start__=0x1fff0000,是SRAM的起始地址。也就是先把向量表放到内存中的最前面。 .intvec 这个段是在vectors.c文件中出现的,
1./*vectors.c片段*/
2.
3.typedef void (*vector_entry)(void);
4.
5. #pragma location = ".intvec"
6. const vector_entry __vector_table[] = //@ ".intvec" =
7.
8.{
9. VECTOR_000, /* Initial SP */
10. VECTOR_001, /* Initial PC */
11. VECTOR_002,
12. VECTOR_003,
13. ......(中间省略)
14. VECTOR_254,
15. VECTOR_255,
16. CONFIG_1,
17. CONFIG_2,
18. CONFIG_3,
19. CONFIG_4,
20.
21.};
从源文件中可以看到这里定义了一个向量表__vector_table(前面的const 很重要不能省,这样才能保证向量表是只读的),向量表中的每一项都是一个指向函数的指针,这里总共有256+4=260个指针,所以占据空间为260*4=1040=0x410.
所以SRAM空间的前0x410的空间已经被向量表占据。即占据了0x1fff0000--0x1fff0410.
②place at address mem:__code_start__ { readonly section .noinit }
这段代码表示要把 .noinit段中的只读部分放到地址空间 __code_start__ 开始的地址上,前面有定义 __code_start__= 0x1fff0410 ,也就是把 .noinit段放到0x1fff0410开始的地址上。所以在内存中代码就连续了,先是向量表,接着的是.noinitd 段。
.noinit 段在crt0.s汇编文件中出现:
1.
SECTION .noinit : CODE
2.
EXPORT __startup
3. __startup
4.
5.
MOV r0,#0 ; Initialize the GPRs
6.
MOV r1,#0
7.
MOV r2,#0
8.
MOV r3,#0
9.
MOV r4,#0
10.
MOV r5,#0
11.
MOV r6,#0
12.
MOV r7,#0
13.
MOV r8,#0
14.
MOV r9,#0
15.
MOV r10,#0
16.
MOV r11,#0
17.
MOV r12,#0
18.
CPSIE i ; Unmask interrupts
19.
import start
20.
BL start ; call the C code
21. __done
22.
B __done
23.
24.
25.
END
这段代码算是芯片复位后执行的第一段代码(如果没有其他异常的话)。作为一个通常的规则,推荐先把通用寄存器(R0-R12)清零。然后是使能中断,跳转到start标号(或函数)处继续执行。
========================
在start.c文件中找到了start函数:
1./*start.c片段*/
2.void start(void)
3.{
4. /* Disable the watchdog timer */
5. wdog_disable();
6.
7. /* Copy any vector or data sections that need to be in RAM */
8. common_startup();
9.
10. /* Perform processor initialization */
11. sysinit();
12.
13. printf("\n\n");
14.
15. /* Determine the last cause(s) of reset */
16. if (MC_SRSH & MC_SRSH_SW_MASK)
17. printf("Software Reset\n");
18. if (MC_SRSH & MC_SRSH_LOCKUP_MASK)
19. printf("Core Lockup Event Reset\n");
20. if (MC_SRSH & MC_SRSH_JTAG_MASK)
21. printf("JTAG Reset\n");
22.
23. if (MC_SRSL & MC_SRSL_POR_MASK)
24. printf("Power-on Reset\n");
25. if (MC_SRSL & MC_SRSL_PIN_MASK)
26. printf("External Pin Reset\n");
27. if (MC_SRSL & MC_SRSL_COP_MASK)
28. printf("Watchdog(COP) Reset\n");
29. if (MC_SRSL & MC_SRSL_LOC_MASK)
30. printf("Loss of Clock Reset\n");
31. if (MC_SRSL & MC_SRSL_LVD_MASK)
32. printf("Low-voltage Detect Reset\n");
33. if (MC_SRSL & MC_SRSL_WAKEUP_MASK)
34. printf("LLWU Reset\n");
35.
36.
37. /* Determine specific Kinetis device and revision */
38. cpu_identify();
39.
40. /* Jump to main process */
41. main();
42.
43. /* No actions to perform after this so wait forever */
44. while(1);
45.}
start函数中,首先执行 wdog_disable()函数来禁用看门狗,然后调用 common_startup()函数初始化RAM(复制向量表、清零.bss段等,为C语言运行环境做准备),接着执行sysinit()函数初始化芯片(时钟、用到的外设等)。下面依次分析这3个函数。
①wdog_disable()
对系统的设定无非是对各个寄存器值的修改。wdog_disable()函数在wdog.c文件中
1./*wdog.c片段*/
2.
3.void wdog_disable(void)
4.{
5. /* First unlock the watchdog so that we can write to registers */
6. wdog_unlock();
7.
8. /* Clear the WDOGEN bit to disable the watchdog */
9. WDOG_STCTRLH &= ~WDOG_STCTRLH_WDOGEN_MASK;
10.}
11.
12. void wdog_unlock(void)
13.{
14. /* NOTE: DO NOT SINGLE STEP THROUGH THIS */
15. /* There are timing requirements for the execution of the unlock. If
16. * you single step through the code you will cause the CPU to reset.
17. */
18.
19. /* This sequence must execute within 20 clock cycles, so disable
20. * interrupts will keep the code atomic and ensure the timing.
21. */
22. DisableInterrupts;
23.
24. /* Write 0xC520 to the unlock register */
25. WDOG_UNLOCK = 0xC520;
26.
27. /* Followed by 0xD928 to complete the unlock */
28. WDOG_UNLOCK = 0xD928;
29.
30. /* Re-enable interrupts now that we are done */
31. EnableInterrupts;
32.}
禁用看门狗流程很简单:先是解锁寄存器,然后更改看门狗寄存器里面的值来禁用看门狗。解锁看门狗寄存器:向解锁寄存器里连续写入0xC520和0xD928,两次写入的时间必须小于20个时钟周期。所以在解锁过程中不能单步运行,期间也不能被中断打断,解锁函数是 wdog_unlock()。上面DisableInterrupts和EnableInterrupts已经在arm_cm4.h中定义过:
#define DisableInterrupts asm(" CPSID i");
#define EnableInterrupts asm(" CPSIE i");
解锁看门狗寄存器后,向看门狗寄存器里写入适当的值就可以禁用看门狗了。
也就是把WDOG_STCTRLH 寄存器(地址是0x40052000)的第0位置0.
②common_startup
初始化RAM(复制向量表、清零.bss段等,为C语言运行环境做准备)。
1. 1 /* File: startup.c */
2. 2 #include "common.h"
3.
4. 3 #pragma section = ".data"
5. 4 #pragma section = ".data_init"
6. 5 #pragma section = ".bss"
7. 6 #pragma section = "CodeRelocate"
8. 7 #pragma section = "CodeRelocateRam"
9.
10. 8 /********************************************************************/
11. 9 void
12. 10 common_startup(void)
13. 11 {
14.
15. 12 /* Declare a counter we'll use in all of the copy loops */
16. 13 uint32 n;
17.
18. 14 /* Declare pointers for various data sections. These pointers
19. 15 * are initialized using values pulled in from the linker file
20. 16 */
21. 17 uint8 * data_ram, * data_rom, * data_rom_end;
22. 18 uint8 * bss_start, * bss_end;
23.
24. 19 /* Addresses for VECTOR_TABLE and VECTOR_RAM come from the linker file */
25. 20 extern uint32 __VECTOR_TABLE[];
26. 21 extern uint32 __VECTOR_RAM[];
27.
28. 22 /* Copy the vector table to RAM */
29. 23 if (__VECTOR_RAM != __VECTOR_TABLE)
30. 24 {
31. 25 for (n = 0; n < 0x410; n++)
32. 26 __VECTOR_RAM[n] = __VECTOR_TABLE[n];
33. 27 }
34.
35. 28 /* Point the VTOR to the new copy of the vector table */
36. 29 write_vtor((uint32)__VECTOR_RAM);
37.
38. 30 /* Get the addresses for the .data section (initialized data section) */
39. 31 data_ram = __section_begin(".data");
40. 32 data_rom = __section_begin(".data_init");
41. 33 data_rom_end = __section_end(".data_init");
42. 34 n = data_rom_end - data_rom;
43.
44. 35 /* Copy initialized data from ROM to RAM */
45. 36 while (n--)
46. 37 *data_ram++ = *data_rom++;
47.
48. 38 /* Get the addresses for the .bss section (zero-initialized data) */
49. 39 bss_start = __section_begin(".bss");
50. 40 bss_end = __section_end(".bss");
51.
52. 41 /* Clear the zero-initialized data section */
53. 42 n = bss_end - bss_start;
54. 43 while(n--)
55. 44 *bss_start++ = 0;
56.
57. 45 /* Get addresses for any code sections that need to be copied from ROM to RAM.
58. 46 * The IAR tools have a predefined keyword that can be used to mark individual
59. 47 * functions for execution from RAM. Add "__ramfunc" before the return type in
60. 48 * the function prototype for any routines you need to execute from RAM instead
61. 49 * of ROM. ex: __ramfunc void foo(void);
62. 50 */
63. 51 uint8* code_relocate_ram = __section_begin("CodeRelocateRam");
64. 52 uint8* code_relocate = __section_begin("CodeRelocate");
65. 53 uint8* code_relocate_end = __section_end("CodeRelocate");
66.
67. 54 /* Copy functions from ROM to RAM */
68. 55 n = code_relocate_end - code_relocate;
69. 56 while (n--)
70. 57 *code_relocate_ram++ = *code_relocate++;
71. 58 }
在IAR中, #pragma section="NAME" [align] 用来在C语言中指定一个名称是NAME的段,align指定对齐方式。指定的段可以被段操作符来引用,段操作符包括 __section_begin, __section_end, 和 __section_size. 个人理解.date、.date_init和.bss应该是IAR中保留的段名称,.date代表数据段中的常量,.date_init代表数据段中已初始化的变量,.bss代表未初始化的变量(zero)。
上面代码中,先是指定了5个不同名称的段(前3个是保留段名称,代表这些段是从这里开始的),CodeRelocate和CodeRelocateRam是在*.icf文件中定义的块(block):
define block CodeRelocate { section .textrw_init }; define block CodeRelocateRam { section .textrw };
quote:
The _
_ramfunc keyword makes a function execute in RAM. Two code
sections will be created: one for the RAM execution (.textrw), and one for the ROM initialization (.textrw_init).
外部变量引用
extern uint32 __VECTOR_TABLE[]; extern uint32 __VECTOR_RAM[];
来自IAR的链接文件(.icf),在.icf文件中已经定义了变量 __VECTOR_TABLE 和 __VECTOR_RAM 其值都是0x1fff0000."Copy the vector table to RAM"这段代码进行判断,如果向量表不在RAM中,则把向量表拷贝到RAM开始的地址上,这里由于在RAM中调试,代码是直接下载到RAM中的,所以不用拷贝。
向量表已经在RAM中了,接下来要重定向向量表,以便在发生异常时到RAM中取得异常入口地址(默认情况下是在0x0取)。 write_vtor((uint32)__VECTOR_RAM) 这个函数用来写向量表偏移寄存器(VTOR,地址0xE000_ED08),这里写入的是RAM起始地址0x1FFF0000。注意这个地址是有要求的,并不是所有地址都能作为向量表起始地址,0x1FFF0000满足要求(这个要求就是:必须先求出系统中共有多少个向量,再把这个数字向上增大到是 2 的整次幂,而起始地址必须对齐到后者的边界上。例如,如果一共有 32 个中断,则共有 32+16(系统异常)=48个向量,向上增大到 2的整次幂后值为 64,因此地址地址必须能被 64*4=256整除,从而合法的起始地址可以是:0x0,0x100,0x200 等----参见ARM Contex-M3权威指南)。另外,如果向量表在RAM区(相对于code区),需把bit[29]置位,这里0x1FFF0000也满足要求。
后面的代码是拷贝数据到RAM中,搭建好C语言运行环境。
上次写了飞思卡尔官方给出的demo程序的启动流程的前面部分:
在存储器最前面放置好向量表-->把通用寄存器清零-->开中断-->跳转到start函数继续执行初始化。在start函数中,顺次执行三个函数:禁用看门狗-->初始化C语言环境(向量表重定向、拷贝数据段到RAM、清零bss段等)-->系统外设初始化。
③系统外设初始化函数 sysinit()
1.#include "common.h"
2.#include "sysinit.h"
3.#include "uart.h"
4.
5./********************************************************************/
6.
7./* Actual system clock frequency */
8.int core_clk_khz;
9.int core_clk_mhz;
10.int periph_clk_khz;
11.
12./********************************************************************/
13.void sysinit (void)
14.{
15. /*
16. * Enable all of the port clocks. These have to be enabled to configure
17. * pin muxing options, so most code will need all of these on anyway.
18. */
19. SIM_SCGC5 |= (SIM_SCGC5_PORTA_MASK
20. | SIM_SCGC5_PORTB_MASK
21. | SIM_SCGC5_PORTC_MASK
22. | SIM_SCGC5_PORTD_MASK
23. | SIM_SCGC5_PORTE_MASK );
24.
25. /* Ramp up the system clock */
26. core_clk_mhz = pll_init(CORE_CLK_MHZ, REF_CLK);
27.
28. /*
29. * Use the value obtained from the pll_init function to define variables
30. * for the core clock in kHz and also the peripheral clock. These
31. * variables can be used by other functions that need awareness of the
32. * system frequency.
33. */
34. core_clk_khz = core_clk_mhz * 1000;
35. periph_clk_khz = core_clk_khz / (((SIM_CLKDIV1 & SIM_CLKDIV1_OUTDIV2_MASK) >> 24)+ 1);
36.
37. /* For debugging purposes, enable the trace clock and/or FB_CLK so that
38. * we'll be able to monitor clocks and know the PLL is at the frequency
39. * that we expect.
40. */
41. trace_clk_init();
42. fb_clk_init();
43.
44. /* Enable the pins for the selected UART */
45. if (TERM_PORT == UART0_BASE_PTR)
46. {
47. /* Enable the UART0_TXD function on PTD6 */
48. PORTD_PCR6 = PORT_PCR_MUX(0x3); // UART is alt3 function for this pin
49.
50. /* Enable the UART0_RXD function on PTD7 */
51. PORTD_PCR7 = PORT_PCR_MUX(0x3); // UART is alt3 function for this pin
52. }
53.
54. if (TERM_PORT == UART1_BASE_PTR)
55. {
56. /* Enable the UART1_TXD function on PTC4 */
57. PORTC_PCR4 = PORT_PCR_MUX(0x3); // UART is alt3 function for this pin
58.
59. /* Enable the UART1_RXD function on PTC3 */
60. PORTC_PCR3 = PORT_PCR_MUX(0x3); // UART is alt3 function for this pin
61. }
62.
63. if (TERM_PORT == UART2_BASE_PTR)
64. {
65. /* Enable the UART2_TXD function on PTD3 */
66. PORTD_PCR3 = PORT_PCR_MUX(0x3); // UART is alt3 function for this pin
67.
68. /* Enable the UART2_RXD function on PTD2 */
69. PORTD_PCR2 = PORT_PCR_MUX(0x3); // UART is alt3 function for this pin
70. }
71.
72. if (TERM_PORT == UART3_BASE_PTR)
73. {
74. /* Enable the UART3_TXD function on PTC17 */
75. PORTC_PCR17 = PORT_PCR_MUX(0x3); // UART is alt3 function for this pin
76.
77. /* Enable the UART3_RXD function on PTC16 */
78. PORTC_PCR16 = PORT_PCR_MUX(0x3); // UART is alt3 function for this pin
79. }
80. if (TERM_PORT == UART4_BASE_PTR)
81. {
82. /* Enable the UART3_TXD function on PTC17 */
83. PORTE_PCR24 = PORT_PCR_MUX(0x3); // UART is alt3 function for this pin
84.
85. /* Enable the UART3_RXD function on PTC16 */
86. PORTE_PCR25 = PORT_PCR_MUX(0x3); // UART is alt3 function for this pin
87. }
88. if (TERM_PORT == UART5_BASE_PTR)
89. {
90. /* Enable the UART3_TXD function on PTC17 */
91. PORTE_PCR8 = PORT_PCR_MUX(0x3); // UART is alt3 function for this pin
92.
93. /* Enable the UART3_RXD function on PTC16 */
94. PORTE_PCR9 = PORT_PCR_MUX(0x3); // UART is alt3 function for this pin
95. }
96. /* UART0 and UART1 are clocked from the core clock, but all other UARTs are
97. * clocked from the peripheral clock. So we have to determine which clock
98. * to send to the uart_init function.
99. */
100. if ((TERM_PORT == UART0_BASE_PTR) | (TERM_PORT == UART1_BASE_PTR))
101. uart_init (TERM_PORT, core_clk_khz, TERMINAL_BAUD);
102. else
103. uart_init (TERM_PORT, periph_clk_khz, TERMINAL_BAUD);
104.}
105./********************************************************************/
106.void trace_clk_init(void)
107.{
108. /* Set the trace clock to the core clock frequency */
109. SIM_SOPT2 |= SIM_SOPT2_TRACECLKSEL_MASK;
110.
111. /* Enable the TRACE_CLKOUT pin function on PTA6 (alt7 function) */
112. PORTA_PCR6 = ( PORT_PCR_MUX(0x7));
113.}
114./********************************************************************/
115.void fb_clk_init(void)
116.{
117. /* Enable the clock to the FlexBus module */
118. SIM_SCGC7 |= SIM_SCGC7_FLEXBUS_MASK;
119.
120. /* Enable the FB_CLKOUT function on PTC3 (alt5 function) */
121. PORTC_PCR3 = ( PORT_PCR_MUX(0x5));
122.}
123./********************************************************************/
首先写SIM_SCGC5寄存器。SCGC5表示的是System Clock Gating Control Register 5(系统时钟门控制寄存器5).系统集成模块 --System integration module (SIM)--控制寄存器组中共有8个SCGC寄存器,它们分别控制不同外设所需要的时钟的开关,SCGC5寄存器控制的是PORTA~PORTE、TSI、REGFILE和LPTIMER时钟的开关,向对应的位写入1表示使能时钟。第一段代码分别打开了PORTA~PORTE的时钟开关。
上面pll_init(unsigned char,unsigned char)函数用来增加系统时钟。
1.unsigned char pll_init(unsigned char clk_option, unsigned char crystal_val)
2.{
3. unsigned char pll_freq;
4.
5. if (clk_option > 3) {return 0;} //return 0 if one of the available options is not selected
6. if (crystal_val > 15) {return 1;} // return 1 if one of the available crystal options is not available
7.//This assumes that the MCG is in default FEI mode out of reset.
8.
9.// First move to FBE mode
10.#if (defined(K60_CLK) || defined(ASB817))
11. MCG_C2 = 0;
12.#else
13.// Enable external oscillator, RANGE=2, HGO=1, EREFS=1, LP=0, IRCS=0
14. MCG_C2 = MCG_C2_RANGE(2) | MCG_C2_HGO_MASK | MCG_C2_EREFS_MASK;
15.#endif
16.
17.// after initialization of oscillator release latched state of oscillator and GPIO
18. SIM_SCGC4 |= SIM_SCGC4_LLWU_MASK;
19. LLWU_CS |= LLWU_CS_ACKISO_MASK;
20.
21.// Select external oscilator and Reference Divider and clear IREFS to start ext osc
22.// CLKS=2, FRDIV=3, IREFS=0, IRCLKEN=0, IREFSTEN=0
23. MCG_C1 = MCG_C1_CLKS(2) | MCG_C1_FRDIV(3);
24.
25. /* if we aren't using an osc input we don't need to wait for the osc to init */
26.#if (!defined(K60_CLK) && !defined(ASB817))
27. while (!(MCG_S & MCG_S_OSCINIT_MASK)){}; // wait for oscillator to initialize
28.#endif
29.
30. while (MCG_S & MCG_S_IREFST_MASK){}; // wait for Reference clock Status bit to clear
31.
32. while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x2){}; // Wait for clock status bits to show clock source is ext ref clk
33.
34.// Now in FBE
35.
36.#if (defined(K60_CLK))
37. MCG_C5 = MCG_C5_PRDIV(0x18);
38.#else
39.// Configure PLL Ref Divider, PLLCLKEN=0, PLLSTEN=0, PRDIV=5
40.// The crystal frequency is used to select the PRDIV value. Only even frequency crystals are supported
41.// that will produce a 2MHz reference clock to the PLL.
42. MCG_C5 = MCG_C5_PRDIV(crystal_val); // Set PLL ref divider to match the crystal used
43.#endif
44.
45. // Ensure MCG_C6 is at the reset default of 0. LOLIE disabled, PLL disabled, clk monitor disabled, PLL VCO divider is clear
46. MCG_C6 = 0x0;
47.// Select the PLL VCO divider and system clock dividers depending on clocking option
48. switch (clk_option) {
49. case 0:
50. // Set system options dividers
51. //MCG=PLL, core = MCG, bus = MCG, FlexBus = MCG, Flash clock= MCG/2
52. set_sys_dividers(0,0,0,1);
53. // Set the VCO divider and enable the PLL for 50MHz, LOLIE=0, PLLS=1, CME=0, VDIV=1
54. MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV(1); //VDIV = 1 (x25)
55. pll_freq = 50;
56. break;
57. case 1:
58. // Set system options dividers
59. //MCG=PLL, core = MCG, bus = MCG/2, FlexBus = MCG/2, Flash clock= MCG/4
60. set_sys_dividers(0,1,1,3);
61. // Set the VCO divider and enable the PLL for 100MHz, LOLIE=0, PLLS=1, CME=0, VDIV=26
62. MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV(26); //VDIV = 26 (x50)
63. pll_freq = 100;
64. break;
65. case 2:
66. // Set system options dividers
67. //MCG=PLL, core = MCG, bus = MCG/2, FlexBus = MCG/2, Flash clock= MCG/4
68. set_sys_dividers(0,1,1,3);
69. // Set the VCO divider and enable the PLL for 96MHz, LOLIE=0, PLLS=1, CME=0, VDIV=24
70. MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV(24); //VDIV = 24 (x48)
71. pll_freq = 96;
72. break;
73. case 3:
74. // Set system options dividers
75. //MCG=PLL, core = MCG, bus = MCG, FlexBus = MCG, Flash clock= MCG/2
76. set_sys_dividers(0,0,0,1);
77. // Set the VCO divider and enable the PLL for 48MHz, LOLIE=0, PLLS=1, CME=0, VDIV=0
78. MCG_C6 = MCG_C6_PLLS_MASK; //VDIV = 0 (x24)
79. pll_freq = 48;
80. break;
81. }
82. while (!(MCG_S & MCG_S_PLLST_MASK)){}; // wait for PLL status bit to set
83.
84. while (!(MCG_S & MCG_S_LOCK_MASK)){}; // Wait for LOCK bit to set
85.
86.// Now running PBE Mode
87.
88.// Transition into PEE by setting CLKS to 0
89.// CLKS=0, FRDIV=3, IREFS=0, IRCLKEN=0, IREFSTEN=0
90. MCG_C1 &= ~MCG_C1_CLKS_MASK;
91.
92.// Wait for clock status bits to update
93. while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x3){};
94.
95.// Now running PEE Mode
96.
97.return pll_freq;
98.} //pll_init
这个函数中两个参数clk_option和crystal_val是两个枚举变量(enum),从它们的定义来看它们的取值范围是0~3和0~15.所以函数开始先进行有效性判断。
MCG表示的是 Multipurpose Clock Generator(多用途时钟发生器).MCG模块向MCU提供几个时钟源选择。这个模块包含了一个 frequency-locked loop (FLL)和一个 phase-locked loop (PLL).FLL可以通过内部的或外部的参考时钟源来控制,PLL可以通过外部参考时钟来控制。模块可以选择FLL或PLL的输出时钟或者内部或外部时钟源作为MCU的系统时钟。上面MCG_2指的是 MCG Control 2 Register. MCG一共有9种操作模式:FEI, FEE, FBI, FBE, PBE, PEE, BLPI,BLPE,and Stop. 不同运行模式的功耗互不相同,要进入各个模式需要写MCG_1~MCG_6寄存器组中某几个寄存器中的某几个位。 我们可以这样说,采用内部组件的模式所消耗的功率少于采用外部组件的模式。而MCG包括两种专门为低功率应用设计的模式——旁通低功耗内部(BLPI)和旁通低功耗外部(BLPE)。驱动BLPI模式的总线频率要比BLPE 模式低,因此BLPI 模式消耗的功率最小。下图2总结了每一种运行模式的功耗。
在sysinit()函数中对pll_init(unsigned char,unsigned char)函数的引用包含两个参数:CORE_CLK_MHZ和REF_CLK,从其定义可以看出其值分别为PLL96和XTAL8,分别代表2和3.K60_CLK 被定义为1.因此,在引用pll_init(unsigned char,unsigned char)函数时根据条件编译,执行的语句依次是:
1.// First move to FBE mode
2.MCG_C2 = 0;
3.
4.// after initialization of oscillator release latched state of oscillator and GPIO
5. SIM_SCGC4 |= SIM_SCGC4_LLWU_MASK;
6. LLWU_CS |= LLWU_CS_ACKISO_MASK;
7.
8.// Select external oscilator and Reference Divider and clear IREFS to start ext osc
9.// CLKS=2, FRDIV=3, IREFS=0, IRCLKEN=0, IREFSTEN=0
10. MCG_C1 = MCG_C1_CLKS(2) | MCG_C1_FRDIV(3);
11.
12.// wait for Reference clock Status bit to clear
13.while (MCG_S & MCG_S_IREFST_MASK){};
14.
15.// Wait for clock status bits to show clock source is ext ref clk
16.while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x2){};
17.
18.MCG_C5 = MCG_C5_PRDIV(0x18);
19.
20./* Ensure MCG_C6 is at the reset default of 0. LOLIE disabled, PLL disabled, clk monitor disabled, PLL VCO divider is clear*/
21. MCG_C6 = 0x0;
22.
23.// Set system options dividers
24.//MCG=PLL, core = MCG, bus = MCG/2, FlexBus = MCG/2, Flash clock= MCG/4
25. set_sys_dividers(0,1,1,3);
26.// Set the VCO divider and enable the PLL for 96MHz, LOLIE=0, PLLS=1, CME=0, VDIV=24
27. MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV(24); //VDIV = 24 (x48)
28. pll_freq = 96;
29.
30.while (!(MCG_S & MCG_S_PLLST_MASK)){}; // wait for PLL status bit to set
31.
32. while (!(MCG_S & MCG_S_LOCK_MASK)){}; // Wait for LOCK bit to set
33.
34.// Now running PBE Mode
35.
36.// Transition into PEE by setting CLKS to 0
37.// CLKS=0, FRDIV=3, IREFS=0, IRCLKEN=0, IREFSTEN=0
38. MCG_C1 &= ~MCG_C1_CLKS_MASK;
39.
40.// Wait for clock status bits to update
41. while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x3){};
42.
43.// Now running PEE Mode
44.
45.return pll_freq;
最后,系统运行在PEE模式下。