对于STM32别名区的理解

1. 什么是位段、位带别名区? 

2. 它有什么好处? 

答1: 是这样的,记得MCS51吗? MCS51就是有位操作,以一位(BIT)为数据对象的操作, MCS51可以简单的将P1口的第2位独立操作: P1.2=0;P1.2=1 ; 就是这样把P1口的第三个脚(BIT2)置0置。 

而现在STM32的位段、位带别名区就为了实现这样的功能。    

对象可以是SRAM,I/O外设空间。实现对这些地方的某一位的操作。 

它是这样的。在寻址空间(32位地址是 4GB )另一地方,取个别名区空间,从这地址开始处,每一个字(32BIT)就对应SRAM或I/O的一位。 
       
这样呢,1MB SRAM就 可以有32MB的对应别名区空间,就是1位膨胀到32位(1BIT 变为1个字) 

我们对这个别名区空间开始的某一字操作,置0或置1,就等于它映射的SRAM或I/O相应的某地址的某一位的操作。    

答2:  简单来说,可以把代码缩小, 速度更快,效率更高,更安全。 

一般操作要6条指令,而使用 位带别名区只要4条指令。    

一般操作是  读-改-写  的方式, 而位带别名区是 写 操作。防止中断对读-改-写  的方式的影响。 

//  STM32支持了位带操作(bit_band),有两个区中实现了位带。其中一个是SRAM 区的最低1MB 范围,第二个则是片内外设 
//  区的最低1MB 范围。这两个区中的地址除了可以像普通的RAM 一样使用外,它们还都有自己的“位带别名区”,位带别名区 
//  把每个比特膨胀成一个32 位的字。 
// 
//  每个比特膨胀成一个32 位的字,就是把  1M  扩展为 32M , 
// 
//  于是;RAM地址 0X200000000(一个字节)扩展到8个32 位的字,它们是:(STM32中的SRAM依然是8位的,所以RAM中任一地址对应一个字节内容) 
//   0X220000000 ,0X220000004,0X220000008,0X22000000C,0X220000010,0X220000014, 0X220000018,0X22000001C 

// 支持位带操作的两个内存区的范围是: 
// 0x2000_0000‐0x200F_FFFF(SRAM 区中的最低1MB) 
// 0x4000_0000‐0x400F_FFFF(片上外设区中的最低1MB) 

/* 

对SRAM 位带区的某个比特,记它所在字节地址为A,位序号在别名区的地址为: 
AliasAddr= 0x22000000 +((A‐0x20000000)*8+n)*4 =0x22000000+ (A‐0x20000000)*32 + n*4 
对于片上外设位带区的某个比特,记它所在字节的地址为A,位序号为n(0<=n<=7),则该比特在别名区的地址为: 
AliasAddr= 0x42000000+((A‐0x40000000)*8+n)*4 =0x42000000+ (A‐0x40000000)*32 + n*4 
上式中,“*4”表示一个字为4 个字节,“*8”表示一个字节中有8 个比特。

// 把“位带地址+位序号”转换别名地址宏 
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
//把该地址转换成一个指针 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
// MEM_ADDR(BITBAND( (u32)&CRCValue,1)) = 0x1; 

例如点亮LED 

// 使用STM32库 
   GPIO_ResetBits(GPIOC, GPIO_Pin_4); //关LED5 
   GPIO_SetBits(GPIOC, GPIO_Pin_7);   //开LED2 

// 一般读操作 
    STM32_Gpioc_Regs->bsrr.bit.BR4 =1;// 1:清除对应的ODRy位为0 
    STM32_Gpioc_Regs->bsrr.bit.BS7 =1;// 1:设置对应的ODRy位为1 

//如果使用 位带别名区操作 
  STM32_BB_Gpioc_Regs->BSRR.BR[4] =1;// 1:清除对应的ODRy位为0 
  STM32_BB_Gpioc_Regs->BSRR.BS[7] =1;// 1:设置对应的ODRy位为1 

代码比STM32库 高效 十倍 ! 

对内存变量的位操作。 

   1. // SRAM  变量 
   2. 
   3. long CRCValue; 
   4. 
   5. // 把“位带地址+位序号”转换别名地址宏 
   6. #define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
   7. //把该地址转换成一个指针 
   8. #define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
   9. 
  10. // 对32位变量 的BIT1 置 1 : 
  11. 
  12. MEM_ADDR(BITBAND( (u32)&CRCValue,1)) = 0x1; 
  13. 
  14. //对任意一位( 第23位 ) 判断: 
  15. 
  16. if(MEM_ADDR(BITBAND( (u32)&CRCValue,23))==1) 
  17. { 
  18. 
  19. }

永不止步步 发表于04-15 10:12 浏览65535次
分享到:

已有0条评论

暂时还没有回复哟,快来抢沙发吧

添加一条新评论

只有登录用户才能评论,请先登录注册哦!

话题作者

永不止步步
金币:67417个|学分:381041个
立即注册
畅学电子网,带你进入电子开发学习世界
专业电子工程技术学习交流社区,加入畅学一起充电加油吧!

x

畅学电子网订阅号