第四十二节:通过串口用delay延时方式发送一串数据。

开场白:

上一节讲了在串口接收中断里即时解析数据头的特殊程序框架。这节开始讲串口发送数据需要特别注意的地方和程序框架,要教会大家一个知识点:根据我个人的经验,在发送一串数据中,每个字节之间必须添加一个延时,用来等待串口发送完成。当然,也有一些朋友可能不增加延时,直接靠单片机自带的发送完成标志位来判断,但是我以前在做项目中,感觉单单靠发送完成标志位来判断还是容易出错(当然也有可能是我自身程序的问题),所以后来在大部分的项目中我就干脆靠延时来等待它发送完成。我在51,PIC单片机中都是这么做的。但是,凭我的经验,在stm32单片机中,可以不增加延时,直接靠单片机自带的标志位来判断就很可靠。

具体内容,请看源代码讲解。

(1)硬件平台:
基于朱兆祺51单片机学习板。

(2)实现功能:
  波特率是:9600.
按一次按键S1,单片机就往上位机发送以下一串数据:
eb 00 55 01 00 00 00 00 41

(3)源代码讲解如下:

  1. #include "REG52.H"
  2. #define const_send_size  10  //串口发送数据的缓冲区数组大小
  3. #define const_key_time1  20    //按键去抖动延时的时间
  4. #define const_voice_short  40   //蜂鸣器短叫的持续时间
  5. void initial_myself(void);    
  6. void initial_peripheral(void);
  7. void delay_short(unsigned int uiDelayshort);
  8. void delay_long(unsigned int uiDelaylong);
  9. void eusart_send(unsigned char ucSendData);  //发送一个字节,内部自带每个字节之间的延时
  10. void T0_time(void);  //定时中断函数
  11. void usart_receive(void); //串口接收中断函数
  12. void key_service(); //按键服务的应用程序
  13. void key_scan(); //按键扫描函数 放在定时中断里
  14. sbit led_dr=P3^5;  //Led的驱动IO口
  15. sbit beep_dr=P2^7; //蜂鸣器的驱动IO口
  16. sbit key_sr1=P0^0; //对应朱兆祺学习板的S1键
  17. sbit key_gnd_dr=P0^4; //模拟独立按键的地GND,因此必须一直输出低电平
  18. unsigned char ucSendregBuf[const_send_size]; //接收串口中断数据的缓冲区数组
  19. unsigned int  uiVoiceCnt=0;  //蜂鸣器鸣叫的持续时间计数器
  20. unsigned char  ucVoiceLock=0;  //蜂鸣器鸣叫的原子锁
  21. unsigned char ucKeySec=0;   //被触发的按键编号
  22. unsigned int  uiKeyTimeCnt1=0; //按键去抖动延时计数器
  23. unsigned char ucKeyLock1=0; //按键触发后自锁的变量标志
  24. void main() 
  25. {
  26.    initial_myself();  
  27.    delay_long(100);   
  28.    initial_peripheral(); 
  29.    while(1)  
  30.    { 
  31.       key_service(); //按键服务的应用程序
  32.    }
  33. }
  34. void eusart_send(unsigned char ucSendData)
  35. {
  36.   ES = 0; //关串口中断
  37.   TI = 0; //清零串口发送完成中断请求标志
  38.   SBUF =ucSendData; //发送一个字节
  39. /* 注释一:
  40.   * 根据我个人的经验,在发送一串数据中,每个字节之间必须添加一个延时,用来等待串口发送完成。
  41.   * 当然,也有一些朋友可能不增加延时,直接靠单片机自带的发送完成标志位来判断,但是我以前
  42.   * 在做项目中,感觉单单靠发送完成标志位来判断还是容易出错(当然也有可能是我自身程序的问题),
  43.   * 所以后来在大部分的项目中我就干脆靠延时来等待它发送完成。我在51,PIC单片机中都是这么做的。
  44.   * 但是,凭我的经验,在stm32单片机中,可以不增加延时,直接靠单片机自带的标志位来判断就很可靠。
  45.   */  
  46.   delay_short(400);  //每个字节之间的延时,这里非常关键,也是最容易出错的地方。延时的大小请根据实际项目来调整
  47.   TI = 0; //清零串口发送完成中断请求标志
  48.   ES = 1; //允许串口中断
  49. }
  50. void key_scan()//按键扫描函数 放在定时中断里
  51. {  
  52.   if(key_sr1==1)//IO是高电平,说明按键没有被按下,这时要及时清零一些标志位
  53.   {
  54.      ucKeyLock1=0; //按键自锁标志清零
  55.      uiKeyTimeCnt1=0;//按键去抖动延时计数器清零,此行非常巧妙,是我实战中摸索出来的。      
  56.   }
  57.   else if(ucKeyLock1==0)//有按键按下,且是第一次被按下
  58.   {
  59.      uiKeyTimeCnt1++; //累加定时中断次数
  60.      if(uiKeyTimeCnt1>const_key_time1)
  61.      {
  62.         uiKeyTimeCnt1=0; 
  63.         ucKeyLock1=1;  //自锁按键置位,避免一直触发
  64.         ucKeySec=1;    //触发1号键
  65.      }
  66.   }
  67. }
  68. void key_service() //第三区 按键服务的应用程序
  69. {
  70.   unsigned int i;
  71.   switch(ucKeySec) //按键服务状态切换
  72.   {
  73.     case 1:// 1号键 对应朱兆祺学习板的S1键
  74.           ucSendregBuf[0]=0xeb;    //把准备发送的数据放入发送缓冲区
  75.           ucSendregBuf[1]=0x00;
  76.           ucSendregBuf[2]=0x55;
  77.           ucSendregBuf[3]=0x01;
  78.           ucSendregBuf[4]=0x00;
  79.           ucSendregBuf[5]=0x00;
  80.           ucSendregBuf[6]=0x00;
  81.           ucSendregBuf[7]=0x00;
  82.           ucSendregBuf[8]=0x41;
  83.                   for(i=0;i<9;i++)
  84.                   {
  85.                      eusart_send(ucSendregBuf[i]);  //发送一串数据给上位机
  86.                   }
  87.           ucVoiceLock=1;  //原子锁加锁,保护中断与主函数的共享数据
  88.           uiVoiceCnt=const_voice_short; //按键声音触发,滴一声就停。
  89.                   ucVoiceLock=0; //原子锁解锁
  90.           ucKeySec=0;  //响应按键服务处理程序后,按键编号清零,避免一致触发
  91.           break;        
  92.   }        
  93. }
  94. void T0_time(void) interrupt 1    //定时中断
  95. {
  96.   TF0=0;  //清除中断标志
  97.   TR0=0; //关中断
  98. /* 注释二:
  99.   * 此处多增加一个原子锁,作为中断与主函数共享数据的保护,实际上是借鉴了"红金龙吸味"关于原子锁的建议.
  100.   */  
  101.   if(ucVoiceLock==0) //原子锁判断
  102.   {
  103.      if(uiVoiceCnt!=0)
  104.      {
  105.         uiVoiceCnt--; //每次进入定时中断都自减1,直到等于零为止。才停止鸣叫
  106.         beep_dr=0;  //蜂鸣器是PNP三极管控制,低电平就开始鸣叫。
  107.      
  108.      }
  109.      else
  110.      {
  111.         ; //此处多加一个空指令,想维持跟if括号语句的数量对称,都是两条指令。不加也可以。
  112.         beep_dr=1;  //蜂鸣器是PNP三极管控制,高电平就停止鸣叫。
  113.         
  114.      }
  115.   }
  116.   key_scan();//按键扫描函数
  117.   TH0=0xfe;   //重装初始值(65535-500)=65035=0xfe0b
  118.   TL0=0x0b;
  119.   TR0=1;  //开中断
  120. }
  121. void usart_receive(void) interrupt 4                 //串口中断        
  122. {        
  123.    if(RI==1)  
  124.    {
  125.         RI = 0;   //接收中断,及时把接收中断标志位清零
  126.        
  127.     
  128.    }
  129.    else 
  130.    {
  131.         TI = 0;    //发送中断,及时把发送中断标志位清零
  132.    }
  133.                                                          
  134. }                                
  135. void delay_short(unsigned int uiDelayShort) 
  136. {
  137.    unsigned int i;  
  138.    for(i=0;i<uiDelayShort;i++)
  139.    {
  140.      ;   //一个分号相当于执行一条空语句
  141.    }
  142. }
  143. void delay_long(unsigned int uiDelayLong)
  144. {
  145.    unsigned int i;
  146.    unsigned int j;
  147.    for(i=0;i<uiDelayLong;i++)
  148.    {
  149.       for(j=0;j<500;j++)  //内嵌循环的空指令数量
  150.           {
  151.              ; //一个分号相当于执行一条空语句
  152.           }
  153.    }
  154. }
  155. void initial_myself(void)  //第一区 初始化单片机
  156. {
  157. /* 注释三:
  158. * 矩阵键盘也可以做独立按键,前提是把某一根公共输出线输出低电平,
  159. * 模拟独立按键的触发地,本程序中,把key_gnd_dr输出低电平。
  160. * 朱兆祺51学习板的S1和S5两个按键就是本程序中用到的两个独立按键。
  161. */
  162.   key_gnd_dr=0; //模拟独立按键的地GND,因此必须一直输出低电平
  163.   led_dr=0; //关Led灯
  164.   beep_dr=1; //用PNP三极管控制蜂鸣器,输出高电平时不叫。
  165.   //配置定时器
  166.   TMOD=0x01;  //设置定时器0为工作方式1
  167.   TH0=0xfe;   //重装初始值(65535-500)=65035=0xfe0b
  168.   TL0=0x0b;
  169.   //配置串口
  170.   SCON=0x50;
  171.   TMOD=0X21;
  172.   TH1=TL1=-(11059200L/12/32/9600);  //串口波特率9600。
  173.   TR1=1;
  174. }
  175. void initial_peripheral(void) //第二区 初始化外围
  176. {
  177.    EA=1;     //开总中断
  178.    ES=1;     //允许串口中断
  179.    ET0=1;    //允许定时中断
  180.    TR0=1;    //启动定时中断
  181. }

总结陈词:
这节在每个字节之间都添加了delay延时来等待每个字节的发送完成,由于delay(400)这个时间还不算很长,所以可以应用在很多简单任务的系统中。但是在某些任务量很多的系统中,实时运行的主任务不允许被长时间和经常性地中断,这个时候就需要用计数延时来替代delay延时,这种程序框架是什么样的?欲知详情,请听下回分解-----通过串口用计数延时方式发送一串数据。

永不止步步 发表于01-24 15:58 浏览65535次
分享到:

已有0条评论

暂时还没有回复哟,快来抢沙发吧

添加一条新评论

只有登录用户才能评论,请先登录注册哦!

话题作者

永不止步步
金币:67410个|学分:307967个
立即注册
畅学电子网,带你进入电子开发学习世界
专业电子工程技术学习交流社区,加入畅学一起充电加油吧!

x

畅学电子网订阅号