在电子行业,绿色设计(Green Design)是业界关注的重点。除了降低能耗,业界正越来越多地限制在连接器外壳中使用某些卤素作为阻燃剂。支持下一代绿色设计(Green Design)的内存器必需满足提高性能,增加功率密度,改进可靠性,降低功耗并避免使用有害物质等诸多要求,这就是今年市场推出最新一代SDRAM计算机内存器DDR4的背景情况。
本文探讨了各种不含卤素(halogen-free)的DDR4插座的开发工作,并且根据严格的JEDEC DDR4规范和IEC 61249-2无卤素依从性,讨论了不同的外壳材料选项。我们检测了各种高性能聚合物,比如液晶聚合物(liquid crystal polymer, LCP)、聚酰胺PA4T和不同的聚邻苯二甲酰胺(polyphthalamide, PPA),并且重点探讨与关键参数相关的特性,比如连接器可靠性、针脚保持力、翘曲,以及匹配PCB的线性热膨胀系统(CLTE)。
图1:根据各种选项总结的DDR要求和材料特性
图 1(左)所示为同时用于SMT和超低侧高(ultra-low-profile, ULP) DDR4连接器测试的材料。对于DDR4应用,回流焊接期间的零起泡和优秀的共面性(co-planarity)是两个关键的合格要求 (qualifier) (简写Q),这两项设计要求外壳材料具有最高的热性能和机械性能。图1(右)所示为PTH和压入配合设计的相同视图。关键的合格要求就是波峰焊期间不起泡和出色的共面性。其它较不重要的设计参数就是所谓的差异要求 (differentiator) (简写D)。
DDR4连接器端接方法
端接是指用于连接一个端子和一个导体的方法,良好的端接确保稳固的电气接触,气密连接则防止腐蚀。DDR4连接器的常用端接方法有:
●表面安装技术 (SMT) (这是设计趋势)
●针脚通孔(PTH) (目前的主流技术)
●通孔回流焊(Pin in Paste) (主要用于一体式PC)
●压入配合 (主要用于电信)
图2:DDR4设计中的多种组装技术
连接器设计细节上的差异可以直接引发外壳材料的选择问题。例如,通孔回流焊(Pin-In-Paste)和表面安装(SMT)设计必须采用极高温塑料,因为它们在装配期间必须经受回流焊步骤。这种连接器完全符合RoHS标准要求,暴露在260-280℃范围的无铅 (lead-free)安装温度。连接器外壳选择材料必须具有极端的机械和热性能,以承受约10秒的峰值温度。而且,材料必须适当平衡低吸湿性和高表面张力,避免了高温红外回流焊(IR-reflow)工艺期间形成所谓的气泡。
以上要求对于PTH设计来说则较为不重要,因为在PTH设计中PCB在装配期间用作热屏蔽。这类连接器外壳的有效暴露温度大约比回流焊的降低15℃。
通孔回流焊(Pin-in-paste)基本上是回流焊和引脚通孔(PTH)连接器设计的结合,实际装配仍然在回流焊过程中进行。压入配合装配期间不会暴露在这样的温度下,因此原则上可以使用各种低温塑料。然而,由于大多数OEM厂商喜欢在所有设计中都用上DDR连接器等组件,所以最佳的成本和设计,以及供应链灵活性都不得不取决于是否选择高温塑料。
连接器翘曲
当连接器被焊接到PCB上而失去共面性时,就会发生连接器翘曲 (warpage) 情况。此类翘曲是一种复杂的现象,受各种参数影响,比如用于连接器外壳的材料热变形温度(heat distortion temperature, HDT)、塑料壳体和PCB之间比较热膨胀系数(comparetive thermal expansion, CTE)的不同,以及外壳材料的流动性,以及外壳注塑成型期间产生的相关应力。
线性热膨胀系统(CLTE)
为了在FR4或最新的无卤素 (halogen-free) PCB上达到良好的连接器共面性,必须尽量使线路板和连接器外壳材料间的CLTE匹配。另外,需要结合负载下的高硬度和高变形温度(high deflection temperature, HDT),确保回流焊后低翘曲。
流动性
为了生产高品质DDR4连接器,同时保持OEM厂商可承担的成本,制造商寻找的外壳材料需具有尽可能大的流动性,并满足其它关键设计要求如共面性。使用高流动性材料在注塑成型工艺中填充了高数量的模腔(cavity)。而且,通过注塑机的单一注射,可以生产更多的外壳,从而降低制造成本。同时,使用高流动性材料意味着外壳的应力耐受较小,因为连接器装配期间在较高暴露温度下的应力较小。结果,连接器可能会翘曲,而特别地,两端的信号针脚可能失去与PCB的电气连接,从而产生远远超过制造成本的高维修成本。
传统上,当注塑厂商或连接器制造商寻求高流动性材料时,液晶聚合物(LCP)通常是首选材料。
图3:各种绝缘材料的流动性
图 3 所示是为DDR4连接器测试的各种材料的流动长度。流动性水平越高,填充模腔越容易,并且可以在注塑期间使用更多的模腔。红线表示用于PTH外壳的8模腔设计的最低流动性水平,以及用于ULP或SMT外壳的4模腔设计的最低流动性水平。蓝线以下的材料具有极小的余量,无法实现高模腔模具设计,或者在批量生产期间带来重大的处理问题。从流动性的角度来看,LCP显示了最佳的性能,其次是PA46、PA66和PA4T。
虽然LCP具有出色的流动性,并且能够达到DDR3及前代产品可接受的要求,但从DDR4开始,所有的LCP材料都受到翘曲问题困扰,原因是DDR4连接器具有显着提高的设计复杂性、更薄的壳壁、更小的宽度和高度,以及更多的针脚数目。
图4显示DDR4连接器在装配前后的翘曲,上面的是LCP材料;而下面的是PA4T和PA46材料。在注塑时,两种材料所生产的翘曲都差不多。然而,在组装到PCB上后,LCP外壳表现出了明显的翘曲,在翘曲方向上有变化,使设计中的任何预测和翘曲校正几乎不可能实现。为了响应这个问题,LCP材料供应商现在提供了较新的LCP/PPS混合材料,其中PPS的更高硬度可改善某些弯曲,并已用于DDR3,但仍不能满足DDR4所要求的共面性等级。
图4:焊接到PCB上的DDR连接器的翘曲影响
图4下面的部分是采用PA4T或PA46材料的DDR4外壳,装配后的翘曲显着降低,远低于0.1 mm规范。此外,两种聚酰胺都没有显示出翘曲方向的任何变化,能够实现良好的翘曲预测和校正。
HDT在DDR4连接器的可靠性上还具有非常重要的作用。在装配到PCB上时,过低的HDT会导致连接器侧壁轻微塌陷。此塌陷将增加所需要的内存模块插拔力。在插座的插拔期间,连接器的薄弱部分可能会出现裂缝;或插拨次数会大幅减少。图6所示为连接器侧壁的此类塌陷。
图5:不同聚合物的HDT-A (1.8MPa)
需要达到蓝色部分的温度范围,确保低翘曲和避免连接器侧壁的塌陷。
要求塑料材料具有高HDT,只有PA46 和PA4T材料具有保持高可靠性所需的高温度范围。
针脚保持力
针脚保持力将端子固定在外壳腔体中。可防止端子脱出或端子变松。通常,称为柄脚(tang)的锁定装置使用弹簧状压力,将端子固定在外壳壁上。“对外壳的接触保持力”规范描述了拔出正确安装的端子所需要的力量。
图6:当绝缘材料的HDT过低时,DDR4连接器在焊接期间发生侧壁塌陷
间距大小从DDR3的1mm减少到DDR4的0.85 mm,增加了对于针脚保持力的挑战(DDR4要求至少0.3kgf/端子)。因为内存连接器规定了大约25次的插拔次数(请参见图7左边),在现场使用中,对于连接器和整个线路板的品质和可靠性,较大的针脚保持力是至关重要的。在内存模块拔出时,连接器外壳必须保持牢固地附着在针脚上。过低的针脚保持力会带来致命的故障,引起产品返修,这不仅代价昂贵,还会损害OEM厂商的声誉。特别是在电信领域或金融领域,这样的故障是完全不可接受的,制造商必须设计具有5至10年使用寿命的产品。
图7:过低的针脚保持力可能导致致命的故障
针脚保持力在很大程度上取决于所用外壳材料的类型,而且也受到连接器和引脚设计的强大影响。例如,对于超低侧高(ultra-low- profile, ULP)设计,由于设计具有较大的补偿,因为允许较广泛的针脚保持力材料容差。在针脚通孔设计中灵活性较小,正确地选择塑料材料成为连接器质量和可靠性的关键因素。
图8:不同绝缘材料在焊接前后的针脚保持力,用于SMT和ULP设计的材料(左)和用于PTH及压入配合设计的材料(右)
图 8显示了ULP和SMT设计中PA4T的突出性能,在焊接前后提供了尽可能大的针脚保持力。对于PTH连接器的针脚保持力,已发现PA46材料是同类最佳的,在焊接后还能保持所要求的0.3kgf/端子。其它材料如PPA (PA10T、PA6T/66)或PA66,可能在连接器组装期间提供足够的保持力,但在焊接后却大大减小,低于规定的0.3 kgf/端子。使用这类材料,品质和可靠性会受到影响,并存在着装配期间的高返修风险,或者多次使用的返工风险。将这些材料用于DDR4连接器并不能获得高成本性能比。
结论
聚酰胺PA46和PA4T是目前用于DDR1到DDR3设计的参考材料,要成功地开发DDR4设计不仅要求深入了解应用和材料,而且连接器制造商、材料供应商和主要的OEM厂商都必须紧密合作。
DDR4 的挑战性设计以及相比先前DDR3技术的各种改变,大大提高了对于机械强度、针脚保持力和流动性的应用要求。由于PA46具有出色的流动性和机械特性组合,所以是最适合PTH和压入配合设计的材料。PA4T具有大约高出25℃的熔融点,更高的表面张力和更低的吸湿性,被认为是SMT和ULP设计的首选材料。
翘曲已经是服务器内使用DDR3连接器的关键挑战,随着SMT、ULP和VLP设计的使用增加,每个服务器电路板上的 DDR插座数目不断增加,翘曲已经成为一个日益增加的挑战。PA46和PA4T材料具有突出的共面性,显着降低了代价昂贵的PCB返修和返工风险,高翘曲性和低机械强度使得LCP无法符合DDR4技术应用要求。
电子行业日益关注可持续性发展,不仅聚焦于避免使用有害物质,符合欧盟的RoHS指令2011/65/ EU,而且还完全符合IEC61240-2-21的无卤素要求。聚酰胺PA46和PA4T确保完全符合无卤素阻燃剂要求,从而避免了连接器生产商或OEM 厂商对合格性进行进一步重新验证的要求。