脉宽调制PWM(Pulse Width Modulation)是利用数字输出信号对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
一、PWM原理
PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM 信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON) 或断(OFF) 的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。
只要带宽足够,任何模拟值都可以使用PWM进行编码。
如图1 所示,用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N 等分,看成N 个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。

图1 用PWM波代替正弦半波
SPWM 波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM 波形。
二、基于CPLD的PWM方案
一个PWM发生器必须包括计数器,数据比较器,另外就是配置PWM 参数的时钟分频寄存器和占空比寄存器,结构框图如图2 所示,这些电路都可以用CPLD 来实现。

图2 PWM控制器结构框图
高频时钟信号经分频器驱动计数器,计数器如图3 所示,总是从Bottom 到Top 的循环计数,计数器的输出和占空比寄存器里的数据经数据比较器比较,输出PWM 信号,当计数器输出小于占空比设定值时输出低电平(0),否则输出高电平(1),如图3(b)(c)所示。

图3 PWM信号发生器时序波形图
从图中还可以看出,计数器的周期就是PWM 信号的周期,通过修改占空比寄存器从而实现对输出PWM 信号高低电平比例控制,图3(b)是占空比为P1 的PWM输出,图3(c)是占空比为P2 的PWM 输出,它们周期相同,高低电平的比例不同。
执行单片机程序,选择不同的分频系数和占空比值,从CPLD 的引脚输出PWM 信号示波器截图如图4所示。

图4 不同占空比的PWM信号示波器截图
三、SPWM
如果将占空比按正弦规律随着时间变化,就可以得到正弦调制的PWM信号,也就是SPWM。如图5 所示,该信号经过阻容滤波可以得到正弦模拟信号,这里的运放做电压跟随器用,对信号驱动能力进行放大。实际得到的正弦信号示波器截图效果如图6 所示。

图6 正弦信号示波器截图
实际得到的三相正弦信号示波器截图效果如图7所示,只是双踪示波器同时只能看两路信号。

图7 具有精确相位差的三相正弦信号示波器截图
五、结束语
今后,MCU+CPLD结构将是很多电子系统设计的一种基本架构,MCU 可以用程序实现复杂智能的控制与检测,CPLD又可以实现灵活多变的外围扩展电路设计,尤其是可以用硬件实现特殊的MCU无法实现的功能,弥补MCU响应速度慢影响实时性问题,两者互补,完全实现硬件软设计,使得同一硬件平台能够通过软件实现更多的功能。