实现方式一:可以在模块顶部将所有寄存器引出,提供统一的模块进行配置和读出。这种方式简单是简单,但是顶层连接工作量较大,并且如果配置个数较多,导致顶层中寄存器的数目也会较多。
实现方式二:通过总线进行连接,为每个模块分配一个地址范围。这样寄存器等扩展就可以在模块内部进行扩展,而不用再顶层进行过多的顶层互联。如下图所示:
那如果进行总线的选择,那么有一种极为简单的总线推荐被使用,那就是AVALON-MM的总线
ALTERA提出两种总线类型,分别是AVALON-MM,AVALON-ST。分别用于连接memeory 和数据流的传送 MM不是你想的意思,其英文为memory map。实现内存映射是其主要目的。主要信号包括如下表所示:
AVALON-MM因此可以说是最简单实用的总线形态了。对于其操作来说,总线为同步类型的总线,写信号只需要在写使能有效时,同时提供写数据即可,而读数据等待信号无效时,读出数据有效。
同样数据类型读数据(readdata)和写数据(writedata)的宽度可以根据设计的需要灵活配置为(8,16,32----256---1024)BIT等值。即可以支持非常大的位宽,但普通应用,只需要(8,16,32,64)BIT等即可满足应用。
那假设总线宽度32,基本上主流的数据总线的宽度。如果需要更细粒度的划分,确定读写某个字节有效,那么byteenable信号也是必须的。其需要4bit来标示32bit(4个byte)中那个有效,每一BIT表示一个字节,因此如果要完全表示所有的字节有效,因此字节有效信号的宽度为(数据总线的宽度/8)。AVALON还可以有burst的操作。主设备可以通过burstcount设备确定brust的长度,为2的n-1次方。
对于普通的应用,通过上述表格中的基本操作即可满足需求,这也正是AVALON-mm总线的优势。此外模块按此标准提供连接接口,各种模块可以挂在NIOSII的片上系统上。
如果模块之间为点对点的连接,同时传递大数据量的操作,那么的AVALON-mm总线就不太适合,因此AVALON_streaming总线就适合这种应用场景。
AVALON_streaming总线本质上是一种同步并行总线,即在同步时钟状态下,使能有效代表传递数据有效。其基本信号如下表所示:
从上图中,可以看出各信号在数据传输中的作用,对于从设备获取数据的处理,就是VALID有效时,数据有效的采样操作,非常简单方便,易于处理。如果从设备设定ready永为1,则表示没有反压的机制,则主设备,可根据自身收包情况一直向从设备发送数据包。此外还有其他辅助信号,可以根据设计需要进行添加。
使用总线使模块标准化,便于代码的移植和设计复用。同时标准总线的设定和统一定义也利于项目团队代码的标准化,便于理解和传播。
下文将介绍两种其他应用较广的总线形态,AHB(AMBA) 和WISHBONE总线(待续)。