压电陶瓷驱动器(PZT)是微位移平台的核心,其主要原理是利用压电陶瓷的逆压电效应产生形变,从而驱动执行元件发生微位移。压电陶瓷驱动器具有分辨率高、响应频率快、推力大和体积小等优点,在航空航天、机器人、微机电系统、精密加工以及生物工程等领域中得到了广泛的应用。然而压电陶瓷驱动器的应用离不开性能良好的压电陶瓷驱动电源。要实现纳米级定位的应用,压电陶瓷驱动电源的输出电压需要在一定范围内连续可调,同时电压分辨率需要达到毫伏级。因此压电陶瓷驱动电源技术已成为压电微位移平台中的关键技术。
直流放大式压电驱动电源的系统结构
驱动电源电路主要由微处理器、D/A转换电路和线性放大电路组成。通过微处理器控制D/A产生高精度、连续可调的直流电压(0~10 V),通过放大电路对D/A输出的直流电压做线性放大和功率放大从而控制PZT驱动精密定位平台。
该设计中采用LPC2131作为微处理器,用于产生控制信号及波形;采用18位电压输出DA芯片AD5781作为D/A转换电路的主芯片,产生连续可调的直流低压信号;采用APEX公司的功率放大器PA78 作为功率放大器件,输出0~100V 的高压信号从而驱动PZT.为实现高分辨率压电驱动器的应用,压电驱动电源分辨率的设计指标达到1 mV量级。
经典线性放大电路设计
放大电路采用美国APEX公司生产的高压运算放大器PA78作为主芯片。PA78的输入失调电压为8mV,温漂-63V/°C,转换速率350 V/μs,输入阻抗108Ω,输出阻抗44Ω,共模抑制比118 dB.基于PA78的线性放大电路设计如图2所示。配置PA78为正向放大器,放大倍数为Gain=1+ R2 R1 ,得到输出电压范围为0~100V。
如果运放两个输入端上的电压均为0V,则输出端电压也应该等于0V。但事实上,由于放大器制造工艺的原因,不可避免地造成同相和反相输入端的不匹配,使输出端总有一些电压,该电压称为失调电压。失调电压随着温度的变化而改变,这种现象被称为温度漂移(温漂),温漂的大小随时间而变化。PA78的失调电压和温漂分别为8 mV、-63 V/°C,并且失调电压和温漂都是随机的,使PA78无法应用于毫伏级分辨率的电压输出,需要对放大电路进行改进。
相位补偿
从工程角度考虑,由于干扰源的存在,会使系统的稳定性发生变化,导致系统发生震荡。因此保证控制系统具有一定的抗干扰性的方法是使系统具有一定的稳定裕度即相角裕度。
由于实际电路中存在杂散电容,其中放大器反向输入端的对地电容对系统的稳定性有较大的影响。如图3所示,采用C5和C6补偿反向端的杂散电容。从系统函数的角度看,即构成超前校正,增加开环系统的开环截止频率,从事增加系统带宽提高响应速度。
PA78有两对相位补偿引脚,通过外部的RC网络对放大器内部的零极点进行补偿。通过PA78的数据表可知,PA78内部的零极点位于高频段。根据控制系统抗噪声能力的需求,配置RC网络使高频段的幅值特性曲线迅速衰减,从而提高系统的抗干扰能力。图3中,R4,C1与R5,C2构成RC补偿网络。
此外电路中C3的作用是防止输出信号下降沿的振动引起的干扰;R10起到偏置电阻的作用,将电源电流注入到放大器的输出级,提高PA78的驱动能力。
结论
本文设计的基于ARM的高分辨率压电陶瓷驱动电源的方案,该方案采用直流放大原理,具有低电路噪声、高分辨率和低输出非线性度等特性,同时驱动电源的带宽可达100kHz。以上特性使本方案的压电驱动电源能够应用于纳米级静态定位的需求,由于其性价比高、结构简单,故具有很高的实用价值。而实验结果也表明:本方案所设计的电源输出电压噪声低于0.43mV、输出最大非线性误差低于0.024%、分辨率可达1.44mV,能够满足高分辨率微位移定位系统中静态定位控制的需求。