随着IP业务的爆炸式增长,对传输速率和传输容量需求的不断增加,40Gb/s端口路由器的出现直接刺激了40Gb/s波分系统的发展。人们已从早几年的“该不该发展40Gb/s 波分技术”的犹豫中走出来,越来越多的光通信器件和系统设备供应商以及网络运营商参与到40 Gb/s波分系统的研究和建设中来。目前40 Gb/s波分设备技术基本成熟,但价格仍居高不下。本文综合分析了40 Gb/s波分系统的传输限制因素以及采取的技术解决方案。
1波分系统配置
波分系统的基本配置见图1,包括光终端(OTM)、光线路放大器(OLA)站点[1-2]。图1中未画出色散补偿模块(DCM)。
40 Gb/s波分系统接收端光波长转换器(OTU)的配置较复杂,见图2。由于复用段的DCM不能完成色散精细补偿,40 Gb/s的系统色散容限小,需配置可调色散补偿器(TDC)。由于接收机输入光功率的动态范围有限,为了使接收机在较高输入光功率下获得较大的光信噪比(OSNR)容限,需配置光放大器(OA)锁定输出光功率。OA和TDC集成在OTU单板内,根据系统偏振模色散的大小,还需选配偏振模色散补偿器(PMDC)。此外,40 Gb/s波分系统中其他光器件比10 Gb/s波分系统的参数规范更严格。
240Gb/s系统设备的调制码型
表1给出了目前40 Gb/s系统设备常见的调制码型的性能参数[3]。非归零码(NRZ)实现简单,适用于短距离的客户侧光互联;光双二进制码(ODB)信号谱宽小、实现简单、OSNR容限较差,适合城域网或8×22 dB以内的长途传输;非归零差分相移键控码(NRZ-DPSK)的非线性性能好、OSNR容限好、实现较复杂,适合12×22 dB以内的长途传输;归零交替传号反转码(RZ-AMI)性能介于ODB和NRZ-DPSK之间;偏振复用正交相移键控码(DP-QPSK)的相干检测系统值得关注。
早期的相干检测技术被认为是提高接收机灵敏度的有效手段,在光放大器出现之后,相干检测技术研究陷入低潮,最近几年相干检测又成为40 Gb/s和100 Gb/s传输的研究热点。DP-QPSK通过偏振复用和四相位调制将40 Gb/s信号速率降为10 Gb/s,从而适合数字信号处理,可在电域实现色散补偿、偏振模色散补偿,如果模拟数字转换和数字信号处理芯片的处理速率进一步提高,设备体积和功耗大幅度降低,未来几年内DP-QPSK可能达到工程实用化的水平。
3传输限制因素及技术解决方案
3.1系统噪声
系统中光放大器产生的放大自发辐射(ASE)噪声是限制传输性能的主要因素。系统中ASE用OSNR来衡量,即通道内的信号功率与0.1 nm内的噪声功率的比值。40 Gb/s的波分系统传输性能的评估优先考虑OSNR代价,而不是以往的通道功率代价。系统的OSNR设计从两方面进行考虑:提高系统接收端的OSNR和提高系统的OSNR容限。系统接收端的OSNR与系统的OSNR容限之差就是系统的OSNR裕量。
波分系统的接收端的OSNR与传输距离、每跨段距离、单波入纤光功率、光放大器个数密切相关。提高单波入纤光功率可有效提高系统接收端的OSNR,但必须权衡考虑非线性效应引起的OSNR代价。传输距离越长,系统的OSNR代价越大。
40 Gb/s系统的OSNR容限比10 Gb/s系统差6 dB,OSNR容限成为40 Gb/s系统工程实用化首当其冲的技术难题。提高系统OSNR容限的途径包括多种:采用更高OSNR容限的调制码型、提高消光比、优化接收机、采用前向误码纠错(FEC)技术。FEC是提高系统OSNR容限的最有效的手段,目前40 Gb/s FEC芯片已成熟商用。FEC提高系统OSNR容限的能力用编码增益来衡量。ITU-T G.709[4]中提供的标准FEC的编码增益大约5.8 dB,ITU-T G.975.1[5]列出了多种增强型FEC,编码增益为8.5 dB左右,不同FEC之间不能互联互通。
3.2非线性效应
波分系统中常见的非线性效应包括自相位调制(SPM)、交叉相位调制(XPM)、四波混频(FWM)、受激喇曼散射(SRS)、受激布里渊散射(SBS)。对40 Gb/s系统传输而言,影响最严重的是通道内四波混频(IFWM)和通道内交叉相位调制(IXPM)[6-7]。
在10 Gb/s系统长途传输中,SPM效应一定程度上相当于色散补偿,推荐色散欠补偿20 km左右;但40 Gb/s系统的SPM效应并不明显,推荐完全补偿。40 Gb/s波分系统属于伪线性系统,光纤色散导致信号脉冲迅速相互交叠。G.652光纤40 Gb/s波分系统,IFWM起主导作用;G.655光纤40 Gb/s波分系统,IXPM起主导作用。40 Gb/s的线路侧调制码型均有载波抑制,例如ODB、NRZ-DPSK、RZ-AMI,这样在40 Gb/s单跳超长系统中,SBS不再是最大入纤光功率的限制因素。FWM限制了G.653光纤的波分复用,可以优化波长配置方案、采用RZ-AMI码传输来降低FWM的影响、采用光纤色散系数较大的L波段进行波分传输[8]。
3.3色散补偿
色散补偿分光域色散补偿和电域色散补偿。40 Gb/s系统的色散容限小,NRZ 40G色散容限只有NRZ10G的1/16。40 Gb/s的电域色散补偿由于受芯片处理速率限制,暂时还不成熟。40 Gb/s波分系统的光域色散补偿分固定色散补偿和可调色散补偿,即:复用段配置固定色散补偿,通道层的接收机之前配置TDC。DCM完成复用段色散粗略补偿,TDC大多采用技术相对较成熟的光纤光栅,完成通道层色散精细补偿。
TDC的色散并不是宽带分布,色散带宽与色散调整量存在相互制约的关系,系统设计需考虑色散带宽满足调制码型的带宽需求。TDC采取自适应色散补偿策略,反馈信号为FEC芯片提供的纠错信息,根据纠错前误码率的变化规律指导色散调整。目前TDC只能调整总色散,不能调整通道色散。未来有可能出现通道级TDC,从而可以在复用段完成可调色散补偿,大幅度降低通道层接收端的配置复杂性。