所谓软件无线电,就是采用数字信号处理技术,在可编程控制的应用硬件平台上,利用软件来定义实现无线电台的各部分功能:包括前端接收、中频处理以及信号的基带处理等。即整个无线电台从高频、中频、基带直到控制协议全部由软件编程来实现。其核心思想是在尽可能靠近天线的地方使用宽带的A/D和D/A转换器,尽早地完成信号的数字化,使得无线电台的功能尽可能地用软件来定义和实现。总之,软件无线电是一种基于数字信号处理(DSP)芯片,以软件为核心的崭新的无线电通信体系结构。既然要采用数字技术,必不可少的器件就是要使用模数转换器,而A/D/A在软件无线电中的位置是非常关键的,它直接影响到软件无线电的软件化程度。
1 转换器(A/D、D/A)的位置
目前转换器的主要应用选择方式有三种,即基带(Baseband)、中频(IF)和射频(RF)。
1.1 基带数字化
传统的超外差接收机是一种模拟和数字电路相结合的系统结构(如图1所示),在这种接收机结构中,它的前端全部采用模拟信号,混频器在RF级接收已调载波并下变频到一中频。与RF相比,在IF级更容易制作廉价滤波器电路,以衰减不需要的信号和混频分量及噪声。这时的RF级混频器需要一个可变频率振荡器(VFO),可调整其频率使之调谐于有用信号,而IF级的混频器则需要一个固定频率振荡器。对模拟信号的数字化采样处理仅仅是在基带部分采用A/D/A,然后再用DSP进行数字处理。
这种传统结构的优点在于技术比较成熟,模拟低损耗的RF器件和IF器件比较容易实现。但接收支路的动态范围大, 为了满足整个系统的指标,要在接收支路设置AGC电路,来控制接收机的动态范围。这样一来,就对AGC电路的响应速度提出了较高的要求,其速度必须适应每个时隙的要求。另外,电路受元器件老化和温度的影响,造成性能的变化,也是不可忽视的。而且,这种设计把整个接收链路只用于一个解调信号或信道,如果要增加一路载波,就要添加一整套相同的从RF变换到基带的设备,代价很大。因此,在软件无线电中,不要用这种电路结构形式。
1.2 中频数字化
现在的A/D变换器已足以在中频(IF)对模拟信号进行数字化,如图2所示。此时,由于LO(本地振荡器)输出一个固定频率,不需要调谐IF混频器,从而使电路更简单。
目前,已经出现了一些在IF能使多个信道的信号实现数字化的A/D变换器,这给必须同时处理多个信道的接收机(如基站)带来了极大的好处。因为数字化的IF中包含了来自所有相关信道的信息,只需要一个RF前端,体现了软件无线电的通有性。由图2可以看出,把宽带数字化信号直接送入到DSP中,并用软件实现其后的所有其它功能(如调制、解调、编/解码、加/解密等)。由于DSP可以用软件来调整和更新,从而可以适应不同的空中信号接口标准以及今后的技术更新,摆脱了更新硬件结构的重新设计。
从目前的技术能力来看,从高速、高分辨率的A/D获得数据后,再用DSP处理来完成所有的处理任务是不现实的。好在有公司开发出了专用器件-下变频器DDC来执行大部分的IF处理工作。DDC对一个数字化的输入进行下变频后,再抽取和低通滤波,从而输出一个低比特率的基带信号,使得DSP摆脱了这些重复的处理工作,去完成其它处理任务。
在IF级采用数字化技术除了可以进行多信道操作外,还可以获得其它好外。如一个DDC根据公式10log[(2Bw)/fs],其中Bw为信道带宽,Fs为采样频率,可以增加处理增益,从而增大了链路的信噪比(SNR),一般认为可有20dB的处理增益。
当然,在中频进行数字化处理时,要求DSP必须满足下列要求;
*运算速度快。DSP必须具有高指令执行速度,同时还要具备功能强大的指令系统,支持单周期内完成常用的浮点运算和逻辑运算的能力。
*高精度的数据处理。由于数字信号处理中所固有的量化效应和有限长寄存器效应的影响,在实际处理过程中会出现误差,并随着运算的增加遂渐积累。这就要求数据一定要有足够的精度,并且处理器支持高精度运算,才能减小这些误差。DSP至少要支持32位浮点运算的能力。
*高速数据交换能力。软件无线电各模块之间需要进行大量的数据交换,DSP总线必须有足够的数据传输和I/O吞吐能力,才能保证对信号的实时处理。另外,开放的设计应用条件是总线系统必备的特征要素。
*支持多SHARC同时工作。
图3给出了一个基站中中频应用软件无线电的例子。它直接在中频对信号进行A/D转换,转换后的数字信号送入专用处理芯片-可编程下变频器(PDC)中处理,完成对IF的选频和滤波。
当采用一个12位、60dB动态范围的转换器,从一个数字控制的可变增益放大器获得40dB增益,另外,系统的数字下变频器大约增加20dB处理增益。这样,总的动态范围就达到120dB,扣除解调的6~7dB和峰值储备(headromm)的6~7dB,还有100dB,能够满足GSM-900的要求。
如果GSM-900要求消除一个比带内信号高91dB以上、并远离带内信号3MHz的干扰信号,用数字技术消除此干扰,需要91dB动态范围来测定此信号,再中上测定带内信号的30dB动态范围,在基带中最强和最弱信号测量之间的差值为121dB。限定200kHz信道带宽,并假定在70MHz对IF信号进行取样,根据前面的公式,下变频器增加22.4dB,即真正的动态范围是98.6dB。数据变换器中每位大约等效于6dB,此动态范围就相当于16位。目前还不能批量生产16位、70MHz的变换器。
1.3 射频数字化
一个真正的软件无线电(见图4),是在天线之后对宽带RF模拟信号进行数字化,而且数字电路是通过软件来完成所有的滤波、解调和其它操作,从而去除了所有的IF以及与之相关的混频和滤波电路。这不仅使电路的元件数显著减少,提高了可靠性,而且变换器还数字化了包括很多信道的相关频带。根据变换器的带宽,同一无线电可工作在宽频带,适合各种不同的空中信号接口,处理不同的业务,这对DSP提出了更高的要求。目前的A/D和DSP等器件也正向这一方向努力,但要实现这一最终目标,恐怕还要等待几年。
2 转换器的特性
决定A/D性能垢因素主要有以下几个:
2.1 采样率和分辨率
采样率由信号带宽决定,分辨率(位数)则要满足一定的动态范围和数字信号处理精度,A/D的分辨率越高(位数越多),需要转换的时间越长,转换速率就越低,两者相互制约。高速A/D的结构主要采用全并行或闪烁式,而高分辨率A/D主要采用∑-Δ结构。有关A/D的具体应用可见参考文献[1]。
2.2 无寄生动态范围的信噪比
无寄生动态范围(SFDR)用来度量转换器中的非线性误差源,常是高速器件性能的限制因素。如果没有最高线性度,任何失真或谐波都会产生强信号的像频,与真正的信号难以区分。信噪比(SNR)则是度量一个信号无论它比噪声底值高多少,转换器必须仍能检测到它。与SFDR有很大关系的是近远(near-far)问题。在某此系统,无线电即使只在几个信道外出现很强信号的情况下,也必须能检测到一个弱信号,而强信号的失真分量所产生的大寄生信号可能淹没弱边缘信号。SFDR性能指标允许对靠近噪声底值的信号进行SNR评估。解决近远问题的一个基本方法是采用可编程增益级。AGC的调节可以适合接收信号的强度,从而A/D总是接收一个同样强度的信号,降低对其动态范围的要求,但不适合接收多个不同强度信号的宽带接收机。
软件无线电容波段设计的另一个困难是数据变换器的SFDR在数字化一个全标度信号时与较小信号工作时是不同的。对于较低电平的信号,SFDR比一般较好,因为变换器在其范围内的其余部分具有更高的线性度、而在全标度上变换器的非线性和跟踪/保持转换率受限制。因此,在全标度的附近减小信号也可以改善SFDR。
为了提取强信号环境下的弱信号,可选的A/D转换器主要有两种:A管道式(pipeline)结构,其SFDR和SNR分别可以达到100dB(20MHz输入时)和75dB以上;B.粗细调整型A/D,采用称为数字两端式两级A/D转换结构,对输入信号进行粗采样、细采样,并对细采样数据进行校正,从而实现极低的采样抖动(达0.3ps)。
2.3 与处理器的接口
随着A/D和D/A速度的提高,转换结果到MCU和DSP的数据速度也需要提高。目前主要采用如下:①在A/D内部集成FIFO存储器和与处理器兼容的SPI串行接口;②采有并行接口;③直接把A/D或D/A集成在处理器内部。
由于处理器的数字噪声对A/D转换器性能有重要影响,在高速数据转换器的应用中,几乎都用与MCU或DSP分离的方法设计系统。
本文探讨了软件无线电中的数据变换器应用的若干问题,涉及不够全面。由于数据变换器的高速、大容量应用,在电路设计方便还有很多技巧。器件的不断发展也在提供着更好的处理方法。