1 系统硬件设计
基于3G车载移动终端的GPS定位系统主要由GPS接收模块、音视频采集模块、3G无线通信模块和地面监控指挥中心等组成。GPS接收模块接收到定位卫星信号,经过Hi3512中的ARM926EJ-S处理器校验和提取出有用信息(包括自身所在的地理位置坐标、速度、时间等)后,压缩打包成符合通信协议的字符串放入全局缓冲区。音视频采集模块通过高清摄像头和拾音器采集到多路音视频数据,经过Hi3512中的DSP将其压缩编码成H.264格式的音视频复合流数据存入缓冲区。最后,3G无线通信模块将缓冲区的GPS定位数据和音视频复合流数据封装入同一个结构体内,进一步打包成IP数据包发送到基站,再利用基站的无线通信网络将数据包转发到地面监控指挥中心。监控指挥中心的专用计算机接收到数据包后,首先解包分离出GPS数据和音视频数据,并根据需要分别进行存储。然后将音视频数据进行解码和格式转换,将GPS数据通过地图匹配技术进行处理,最终在显示模块中显示车辆的运动轨迹和音视频信号。地面指挥中心的监控人员根据车辆的状态和位置信息,对车辆进行调度指挥。本系统的硬件结构图如图1所示。
1.1 Hi3512的概述
Hi3512是一款基于ARM926EJ-S处理器内核以及视频硬件加速引擎的高性能通信媒体处理器,具有高集成、可编程、支持MPEG-4 AVC/H.264和MJPEG等多协议的优点,支持30 fps DI的H.264/MJPEG同时编解码或60 fps DI和60 fps CIF的H.264/MJPEG的双码流编码。其内部硬件集成AES、DES、3DES多种加解密算法和数字水印技术,并提供丰富的外围接口,包括PCI、SDIO、I2C、I2S、SPI、GPIO、IR、UART、USB 1.0 HOST和USB 2.0 OTG等。可广泛应用于实时视频通信、数字图像监控等领域[3]。
1.2 GPS定位模块
GPS定位模块通过串行接口与主电路板相连接,负责接收GPS定位卫星发送的导航电文,是实现接收GPS数据的关键。GPS模块的选择通常从技术参数、支持的通信协议、控制接口和成本几个方面考虑。本系统中的GPS接收模块采用LOCOSYS公司生产的SC-1513 GPS接收模块,接收数据采用NMEA0183格式,波特率设置为4.8 kb/s,支持20通道C/A码接收控制,可同时监控20路卫星信号。SC-1513 GPS接收模块有着高灵敏度、低功耗、体积小和性能稳定等特色,采用了最新的SIRF starIII芯片组技术,在大楼林立的都会或浓密的森林环境中都能正常的运作,广泛应用于车载定位领域[4]。
主芯片Hi3512和SC-1513通过UART口连接,接口配置的输入标准电压为3.3 V。硬件接口电路如图2所示。
1.3 3G无线通信模块
该系统的3G无线通信模块采用的是中兴公司的MC8630 CDMA EV-DO无线模块,它具有语音、短信、数据业务和GPS等功能,支持内嵌TCP/IP,RevA数据业务前向峰值数据速率可达3.1 Mb/s,反向峰值数据速率达1.8 Mb/s,可以提供经济型高速互联网接入和无线数据等业务。Hi3512和MC8630通过USB口连接,并通过AT指令来控制对采集数据的打包,使用起来非常方便。此外,ARM可以借助3G无线通信模块强大的数据传输功能,实时地进行信息查询,可以通过互联网,充分利用网络资源,享受网络快捷、方便、全面的服务[5]。
2 系统软件设计
基于3G车载移动终端的GPS定位系统在软件部分的设计上主要可以分为6个功能模块,即初始化模块、控制模块、GPS数据获取和处理模块、GPS数据压缩模块、用户界面模块以及通信模块。
初始化模块主要实现对串口的初始化及所有的标志位置零。本系统的GPS串口参数需初始化为:波特率设置为4 800 B,无奇偶校验位,数据位设置为8 bit,停止位为1 bit。控制模块主要是根据上位机的命令来执行相应的操作,如采集GPS数据、发送当前行车状态等。用户界面模块的主要功能就是把GPS数据及状态数据等在LED屏上显示出来,同时还可以响应触摸屏上的中断,以便实现通过触摸屏操作车载中断的功能。
GPS数据获取和处理模块的主要功能就是通过与串口相连的GPS模块获取当前的GPS信息,并验证当前所获取的GPS信息的有效性和提取所需要的有用信息(包括自身的地理位置坐标、速度、时间等)。
GPS数据压缩模块主要采用对硬件资源要求不高、运算量不大、压缩效率高,适合在嵌入式终端上应用的Huffman编码技术对有待传输的GPS数据进行有效的无损压缩,不仅节省了数据传输时的通信费用,更提高了数据传输的实时性。本设计将Huffman编码的源程序直接嵌入到ARM中,实时地对原文件直接进行概率统计后编码[6]。一般,GPS定位数据中有大量的重复字符,属于冗余信息,完全可以去掉。因此,本设计的思想是先去除定位数据中的直观冗余信息,在此基础上对照Huffman压缩编码表对处理后的数据进行快速压缩,最后存入数据存储缓冲区,以便数据的后处理。其中,Huffman压缩编码表是由PC对GPS数据中的字符出现的次数进行预先统计后生成,并预存入终端Flash中的。其具体流程图如图3所示。
通信模块的主要任务是完成车载终端与监控指挥中心的无线通信,该设计利用MC8630无线模块连接3G无线网络与监控指挥中心进行通信。启动车载终端的同时,MC8630模块也会被启动,这时,该模块会自动连接上无线网络进入命令模式,等拨号成功后,该模块会把存储区已处理好的GPS数据和音视频流数据封装入一个结构体内,打包成IP数据包,通过3G无线网络发送到监控指挥中心,实现与监控指挥中心的无线通信。
根据以上对功能模块的描述,本设计软件部分的主流程图如图4所示。
3 系统测试效果
根据上述方案开发的实验系统在实际运营网络中进行了测试。目标定位信息接收速率为1 次/s,动态定位精度10 m,测试结果如图5所示。其能实现动态的视频传输,帧率在10~30 fb/s之间可调,最大分辨率为CIF(352 288),视频流畅,延迟较小,测试结果如图6所示。GPS数据经预处理后再编码的压缩效果明显,压缩比为50%左右,利用MATLAB仿真软件对测试效果进行最小二乘法曲线拟合,得出了压缩比随文件大小的走势如图7所示,可以看出压缩比最初随文件的增大而略有增大,以后趋于稳定。测试表明,本系统各项性能已达到工业要求,基本实现了设计的目标。