1、Boost电路的滑模变结构控制
Boost电路如图1所示。控制的目的是通过控制有源开关器件的占空比大小,使系统状态稳定在期望值Xd(工作点)。
1.1、控制算法
Boost电路工作于CCM模式时电路的状态方程
图1Boost变换器
等价控制是在理想切换条件下实现理想滑模运动。而实际控制中,由于切换器件的惯性,开关延时等非理想切换因素,滑模运动将不会在S=0的切换面上运动,而是在其邻域Δ内运动。
换句话说,引入Δu是为了修正由于实际系统的非理想因素造成的非理想切换而造成滑动模态误差的。代入式(3),显然,当Δu≠0,则≠0。为满足滑模到达条件以及改善系统的动态品质,通过选择的恰当形式,保证系统到达条件s.<0成 立 , 以 期 系 统 以 某 种 方 式 趋 向 切 换 面 , 形 成 滑 动 模 态 。 这 里 通 过 引 入 趋 近 律 〖 11〗
因此,Boost电路工作于CCM模式时的滑模变结构控制律原则上,从物理意义上看,相当于电路中的占空比。即实际中的大小将受变换器本身物理本质的限制,∈(0,1)。
1.2、K1、K2系数的选择
由式(10)可见,Δu的大小与K1与K2的系数有关。理论上,只要K1和K2不小于零,则滑动模态将稳定。但是K1取值过大,则系统到达切换面的速度将很大,容易引起系统较大幅度的抖动;K1取值过小,则控制的过渡过程长。所以,控制的过渡过程与动态品质的好坏,更多的由系数K1决定,线性项—K2S只是在一定程度上能缓和系统冲向切换面的速度。希望系统趋近切换面的速度大小能自动根据由系统状态所确定的s距离切换面s=0的大小来确定。因此,采用以下方式确定系数K1和K2。
其中,T是Boost变换器的开关工作周期。
这里我们强调不同时刻取不同的K1(m)值。
为确保K1(m)>0,K2的取值范围:0≤K2≤fS(15)
1.3、实际控制中的物理约束
对Boost电路,我们是以占空比作为控制量,它必须受Boost电路本身的物理性质的限制。当控制量的大小超出(0,1)的范围时,我们必须在控制方案中对控制量的大小加以约束。Boost电路的直流分析表明,其占空比与其直流解I和U的大小成反比。为提高控制的响应速度,同样,这里我们采用动态改变受约束的控制量的大小。
即约束控制量的大小依开关工作周期衰减。
综上所述,我们得到Boost电路工作于CCM模式时第m个工作周期的滑模变结构控制律
取元件参数为:L=6mH,C=45μF,R=30Ω,Ug=37.5V,fS=10kHz,开环占空比D取0.25。直流分析结果得:U=50V,I=2.2A。取期望稳定工作点为:Xd=[2.250〗T。取控制参数:KC=[-1501]T,K2=800。分别对Boost电路的起动过程和其稳态系统有扰动变化的情况进行仿真研究。
图2是Boost电路采用不同的控制律下起动瞬态过程,图3是起动过程的相平面图,其中“0”是期望工作点Xd所在的位置。由图显然可以看到采用式(6)的等价控制作为实际滑模控制律时(曲线3),系统会存在明显的稳态误差,系统最后不会趋向切换面,也不会运动到期望工作点(图3中虚线)。而采用式(17)的控制算法则可以很好地解决该问题(曲线1和图3中实线),并有效地解决滑模控制中的高频抖动问题。如果式(17)的控制算法中,控制参数取常数,而忽略线性项—K2S,即不采用动态修正滑模误差的控制算法时,动态响应时间会很长,K1的取值会很大。例如当K1=10000时,起动瞬态过程如图2中曲线2所示。
图4和图5是考虑系统扰动情况的瞬态特性曲线。图4中,系统在前阶段输入电压的扰动突然由正常电压降低50%,在后阶段输入电压的扰动突然由正常电压升高10%。图5中,系统在前阶段负载的扰动突然由正常负载增加100%,在后阶段负载的扰动突然由正常电压降低50%。从图中看到,无论系统扰动如何变化,仍然可以保证系统的稳定,控制系统具有较好的鲁棒性。
图2不同控制下起动瞬态过程的比较
图3起动过程相平面图
图4输入电压扰动瞬态过程
图5负载扰动瞬态过程
3、结论
在实现滑模变结构控制时必须考虑实际控制中的非理想切换条件以及实际控制量的物理约束。本文提出的滑模变结构控制算法简单,对Boost电路的起动过程和稳态时系统有扰动变化时情况进行仿真,结果表明,本文的控制方案可以减少系统超调,缩短过渡过程时间,改善系统的动态品质,并有效地解决滑模控制中的高频抖动问题;稳态时,即使系统输入电压或者输出负载有较大扰动,仍然可以保证系统的稳定,控制系统具有较好的鲁棒性。