当我们听到“输入”这个词时,有几样东西会立即跳入我们的脑海中,例如频率、幅值、正弦波、锯齿波等等,优化信号调理时,所有这些都是相关的问题。
然而,许多人未能预先考虑的一样东西是SAR ADC实际输入的类型。在本文中,将重点介绍三种类型的SAR输入:单端,伪差分和差分输入,以及如何在应用中使用这些输入。在未来的博客中,我将讨论必须记住的性能差异和一些关键的实际考虑因素,以获得最佳的输入性能。
单端输入SAR ADC
单端输入是三种输入类型中最简单的,因为ADC只有一个输入。只要信号在输入引脚指定的范围内,SAR就会相对于SAR接地将输入数字化(参见图1)。
图1:单端转换示例
虽然大多数单端SAR ADC可以处理单极性信号,但一些单端SAR ADC设计可以处理幅值(A)很容易超过电源的双极性信号。有些支持单通道,而有些可以支持多个通道。使用单端ADC输入的一个常见应用是电源电压监视。
以下是图1中使用的单端输入SAR ADC的一些其他信息:
产品型号
分辨率
采样率
ADS8568
16位
500 kSPS
ADS8517
16位
200 kSPS
ADS8528
12位
650 kSPS
ADS7866
12位
200 kSPS
ADS7867
10位
280 kSPS
ADS7868
8位
280 kSPS
伪差分输入SAR ADC
伪差分SAR ADC有两个输入引脚;但是,由于当一个输入保持在固定的直流电压(通常为REF/2)而另一个输入可以接受动态变化的输入信号时,进行正确的ADC转换,因此称为“伪差分”。然后将两个输入(AINP-AINM)之间的差分信号转换为数字代码。通常,为输入变量提供+/-100mV的预留空间。图2说明了这种情况和一种独特的情况,其中固定输入(AINM)连接到信号地,使其类似于单端输入。
图2:伪差分输入配置
采用此配置的一个最常见的应用是分流监测,在该应用中不仅可针对固定直流电压测量串联电阻器一侧的电压,而且还可将其转换回电流。
图2中使用的伪差分输入SAR ADC示例:
产品型号
分辨率
采样率
ADS8319
16位
500 kSPS
ADS8317
16位
250 kSPS
ADS8339
16位
250 kSPS
ADS8324
14位
50 kSPS
全差分输入SAR ADC
全差分输入SAR ADC接受两个输入,其中一个输入与另一个互补(参见图3)。两个输入(VDIFF= AINP - AINM)之间的差分信号被转换。
在大多数差分输入SAR中,对ADC输入的共模电压(VCM =(AINP + AINM)/ 2)有限制,这意味着两个信号有固定直流偏置(通常为REF/2,容差为+ -100mV)。
然而,如图3所示,有一些具有唯一输入级的新SAR ADC,能够处理从0变化到REF的共模电压。这种输入被称为真差分输入。
图3:全差分输入配置
全差分SAR ADC支持双极性输入和/或多通道,与单端SAR ADC类似。使用变压器输出的应用采用全差分输入SAR。
以下是图3中使用的全差分输入SAR ADC的更多信息:
产品型号
分辨率
采样率
ADS8881
18位
1 MSPS
ADS8861
16位
1000 kSPS
ADS8318
16位
500 kSPS
ADS8323