电流模式电流的取样方式及对结构影响

1 电流模式电流的取样方式   

对于工作于电流模式的DCDC变换器,通常需要电流检测元件,下面就介绍这些电流检测元件,并阐述它们各自的特点。  

1.1高精度的功率电阻 

高精度的功率电阻是用于检测电流的最用的元件,也称电流取样电阻为了减小功率损耗,电流检测信号的最大幅值较小,对于一些大电流的应用,有的甚至小到25mV、30mV。由于功率地回路中有较大的开关电流,会干扰电流检测信号,从而影响电流检测信号的精度,因此电流检测电阻通常不会放在地端,此外,电流检测电阻放在地端,会使系统的地和电源芯片的地不共地,电源芯片的地会被电流检测电阻抬高,电流检测电阻流过的开关大电流,使电源芯片的地会较大幅度的随系统工作而变化,电源芯片易受到干扰,严重的时候会导致电源芯片无法正常工作。 

 

图1:电流取样电阻

设计中,电流检测的电阻的选取要考虑到其值随温度的变化和精度的要求。布线的时候,要用KELVIN接法,直接从电阻的管脚引出布线,而不要从连接到电阻管脚的铜皮引出布线。电阻引脚的焊盘的焊锡的用量也会影响电流检测的精度。同时选出用ESL尽量小或无感电阻。

 

1.2 电流互感器

互感器也称为电流变压器,主要应用于大功率电路,检测大的电流。电流变压器功率损耗小效率高能够保持良好的电流检测波形,具有较宽的带宽,检测电阻可以用较大的值,并能将整个瞬态电流包括直流分量耦合次边的检测电阻上,同时具有变压器有隔离的作用,因此可以连接到任何地方。

电流变压器的缺点是需要电流变压器和一些额外的元件,成本高,此外,电流变压器通常工作于正激方式,要求在每个电流脉冲周期,磁芯必须复位,也就是要求每个周期,电流脉冲必须过0,磁芯才能够复位。同时,当变换器工作于高的占空比时,电流变压器磁芯复位的时间短,可能导致磁芯无法及时复位,这样就必须外加强迫磁复位电路,保证每个周期电流变压器在起始时可靠复位,从而保证电流检测的精度。电流变压器需要激磁电流,因此也会影响电流检测的精度。

 

图2:电流互感器

对于BUCK变换器,电流变压器与MOSFET串联,检测输入电流。对于BOOST变换器,电流变压器也要与MOSFET串联,检测输入电流。BUCK变换器中,电流变压器不能与输出电感相串联来检测输出电感的电流,BOOST变换器中,电流变压器不能与输入电感相串联来检测输入电感的电流。变换器工作于CCM时,BUCK变换器和BOOST变换器电感中的电流均为较大的直流分量上叠加了较小的交流充放电三角形波,这种大于0的直流电流会使磁芯不能够复位,磁芯会逐渐的饱和,从而无法正确的检测电流

由于DCDC变换器都有一个功率电感,也可以在电路的功率电感上串联一个绕组用于电流检测,这样可以省去专用的电流变压器,问题是带电流检测的功率电感需要定制,成本高。

1.3 功率MOSFET的导通电阻 

如果采用高端的功率MOSFET的导通电阻作为电流取样电阻,这样可以省去额外的电流取样电阻,从而提高效率。但是由于MOSFET的导通电阻值比较分散,而且随温度的变化也会在较大范围内波动,因此电流取样的精度差,电流取样信号在很宽的范围内波动,批量生产时,有些产品可能在输出电流不到全载时就提前进入限流保护,无法在全载时正常工作;有些产品在系统过载时无法提供可靠的限流保护。图3为一个MOSFET的结温与导通电阻归一化系数表,型号:AOL1454,VDS = 40V,ID = 50A, RDS(ON) =7.5mOhm。由图可知,从-20C到100C,归一化系数从0.8到1.3,相差1.6倍。

同时,对于一个输入电压,输出电压和电流已经确定的应用而言,要计算最大的峰值电流,然后由电流参考电压计算出对应的电流取样电流阻,尽管这个电流阻有一定的变化范围,但有时候并不能找到与其相匹配的,具有相应的RDSON的功率MOSFET,做折衷处理时,或者选取RDSON比计算出的RS大的MOSFET,有可能导致系统输出电流不到满载时就提前进入限流保护,无法在全载时正常工作;或者选取RDSON比计算出的RS小的MOSFET,成本高,而且在系统过载时无法提供可靠的限流保护。

 

图3:结温与导通电阻归一化系数

解决的方法是PWM控制器的电流取样的参考电压可以在外部调节,按照一般的设计流程,确定系统的限流点,在电流参考电压可以调节的范围的中间点计算电流取样电阻值,然后选取相应的RDSON的MOSFET,MOSFET选定后,通过选取MOSFET的RDSON和其实际的最高工作温度系数,计算实际的最大的RDSON,再根据限流点和MOSFET最大的RDSON,计算要求的电流参考电压。然后调整外部的电阻分压器的阻器,得到要求的电流参考电压。 

最好的方法是在PWM控制器的内部对MOSFET的检测电压进行温度的补偿调节,从而保证不同的温度下,相同的电流所得到的检测电压相同,现在已有公司开始采用这种技术。 

1.4 功率电感的直流等效串联电阻 

功率电感的等效串联电阻DCR作为电流取样电阻,可以省去额外的电流取样电阻,从而提高效率。同样,由于等效串联电阻的导通电阻值比较分散,而且随温度的变化也会在较大范围内波动,因此电流取样的精度差,电流取样信号在很宽的范围内波动,批量生产时,也会产生在全载时不能正常工作或过载时无法提供可靠的限流保护问题。

同样,在选取电感时,在电感值和饱和电流值所限定的范围内,更难找到与设计的限流点所要求取样电阻相匹配的等效串联电阻,更多时候需要定制,成本高。

另外,使用电感的等效串联电阻,电流比较器的输入阻抗要大,两个输入管脚的偏置电流要小,从而提高电流检测的精度。

解决的最好方法也是PWM控制器的电流取样的参考电压可以在外部调节,调整外部的电阻分压器的阻器,得到合适的电流参考电压,在满足相应的电感值,饱和电流值和DCR的前提条件下,得到要求的限流点。

另外的一个方法是加一个电阻分压器和相关的滤波元件,但在设计要作相应的匹配,如图4所示。

 

图4:电感DCR作电流取样电阻的滤波网络

电阻分压器将DCR的电压进行分压,然后由电容C1滤波,电容C1的电压为送入到PWM电流放大器的电流取样信号。

Vc1=R2*VDCR/(R1+R2) 

另外,为了满足滤波器时间的要求,必须使

R1*R2*C1/(R1+R2)=L/RDCR

2 电流模式电流的取样方式对结构影响   

本文以Buck变换器为例,来说明电流取样电阻放置的位置和相对应的工作模式。电流的取样电阻有三种不同的放置方式:

(1)放置在输入回路,即与高端主开关管相串联。

(2)放置在输出回路,即与电感相串联。

(3)放置在续流回路,即与续流的二极管或同步开关管相串联。

2.1 电流取样电阻放置在回路
 

在Buck变换器中,输入回路,即高端的主开关管流过的电流波形为上升阶段的梯形波形。峰值电流模式检测的是上升阶段的电流信号的最大值,因此,如果电流取样电阻放在Buck变换器的输入回路,系统工作于峰值电流模式。也可以用高端的主开关管的导通电阻作电流检测电阻。

Buck变换器的输入电压高于输出电压,电流取样电阻放在Buck变换器的输入回路,那么电流放大器的两个输入管脚的共模电压为高的输入电压。高的共模输入电压的电流放大器的成本高,因此,电流取样电阻放在Buck变换器的输入回路一般应用于低的输入电压,尤其是低输入电压的单芯片的Buck变换器。为了降低成本提高效率,一些Buck变换器了采用集成在芯片内部的高端的功率MOSFET的导通电阻做于电流取样电阻。

由于电流取样电阻检测的是高端的开关管导通期间的电流,在高端的开关管导通瞬间,续流二极管的反向恢复使电流前沿产生大的尖峰,会使电流比较器误动作,所以PWM控制使用一定的前沿消隐时间LEB屏蔽电流前沿尖峰。

如果电流放大器的额定的共模电压小于电流的输入电压,那么可以用下面的由4个电阻组成的电阻桥,从而降低输入到电流放大器的共模电压。桥中的电阻要用高精度的电阻,以提高电流取样的精度。同时为了降低精态的功耗,要用较大值的电阻。但电阻值太大,精度差,因此要做一些折衷的处理。

 

图1:电流取样电阻放置输入回路

 

图2:电阻桥降低共模电压

2.2 电流取样电阻放置在续流回路 

在BUCK变换器中,续流回路,即低端的续流二极管或同步续流开关管回路中,流过的电流波形为下降阶段的梯形波形。谷点电流模式检测的是下降阶段的电流信号的最小值,因此,如果电流取样电阻放在Buck变换器的续流回路,系统工作在谷点电流模式。也可以用低端的续流开关管的导通电阻作电流检测电阻。谷点电流模式大多用于低压大电流的应用,因此通常采用同步的BUCK变换器,续流回路用MOSFET取代二极管,MOSFET导通电阻低,其导通压降:即导通电阻和电流乘积小于二极管的压降,因此功率损耗低,提高系统的效率。

 

图3:电流取样电阻放置续流回路

同步的BUCK变换器高端的主开关管和低端的同步续流管之间要设定一定的死区时间以防止上下管的直通。   

峰值电流模式是高端的开关管导通后才开始检测电流,容易受到前沿尖峰的干扰,因此也在加一定的前沿消隐时间,防止在电流信号的前沿上升过程中误触发。峰值电流模式的前沿尖峰是由于低端的续流开关管关断的过程中,其内部寄生的二极管或额外加的并联二极管的反向恢复所产生的。

2.3 电流取样电阻放置在输出回路 

在BUCK变换器中,输出回路,即输出功率电感,流过的电流波形为三角形波,这包含上升和下降阶段的梯形波,是完整的一个开关周期的电流波形,因此它可以是峰值电流模式,可以是谷点电流模式,也可以是平均电流模式但通常这种配置工作于峰值电流模式。

电流取样电阻放在电感后面,由于高端的主关管和低端的续流开关管所并联的二极管反向恢复所产生的电流尖峰初滤除,电流检测电阻不会检测到这些干扰的噪声,检测的精度高。

电流取样电阻放在输出回路,由于输出电压低,那么电流比较器的两个输入管脚的共模电压较低,因此可以使用低输入共模电压的差动放大器,提高电流检测的精度,降低噪声。

这种配置另一个大的优点是可以使用电感的DCR作为电流检测电阻,从而进一步的提高系统的效率。

 

图4:电流取样电阻放置输出回路

若输出的电压较高,那么也可以用4个电阻组成的电阻桥,从而降低输入到电流放大器的共模电压。

 

永不止步步 发表于10-20 10:48 浏览65535次
分享到:

已有0条评论

暂时还没有回复哟,快来抢沙发吧

添加一条新评论

只有登录用户才能评论,请先登录注册哦!

话题作者

永不止步步
金币:67410个|学分:308117个
立即注册
畅学电子网,带你进入电子开发学习世界
专业电子工程技术学习交流社区,加入畅学一起充电加油吧!

x

畅学电子网订阅号