器件:74hc595.
引脚说明:
SDA:数据输入口。
SH_CP:数据输入控制端,在每个 SH_CP的上升沿, SDA口上的数据移入寄存器, 在 SH_CP的第 9个上升沿, 数据开始从 QS 移出。
ST_CP:数据置入锁存器控制端。
Q0~Q7:数据并行输出端。
数据从SDA 口送入 74HC595 , 在每个 SH_CP的上升沿, SDA口上的数据移入寄存器, 在 SH_CP的第 9个上升沿, 数据开始从 QS 移出。如果把第一个74HC595的QS和第二个74HC595 的 SDA 相接, 数据即移入第二个74HC595中, 照此一个一个接下去, 可接任意多个。数据全部送完后, 给 ST_CP一个上升沿, 寄存器中的数据即置入锁存器。此时如果 EN 为低电平, 数据即从并口Q0~Q7 输出, 把Q0~Q7 与LED的8 段相接, LED就可以实现显示了。要想软件改变LED的亮度, 只需改变 EN的占空比就行了。
实验原理及内部结构:
如图所示:
74HC595 内含8 位串入、串/ 并出移位寄存器和8位三态输出锁存器。寄存器和锁存器分别有各自的时钟输入(SH_CP和ST_CP) , 都是上升沿有效。当SH_CP从低到高电平跳变时, 串行输入数据(SDA) 移入寄存器; 当ST_CP从低到高电平跳变时, 寄存器的数据置入锁存器。清除端(CLR) 的低电平只对寄存器复位(QS 为低电平) , 而对锁存器无影响。当输出允许控制(EN) 为高电平时, 并行输出(Q0~Q7) 为高阻态, 而串行输出(QS) 不受影响。74HC595 最多需要5 根控制线, 即SDA、SH_CP、ST_CP、CLR 和EN。其中CLR 可以直接接到高电平, 用软件来实现寄存器清零; 如果不需要软件改变亮度, EN 可以直接接到低电平, 而用硬件来改变亮度。把其余三根线和单片机的I/ O 口相接, 即可实现对LED 的控制。数据从SDA 口送入74HC595 , 在每个SH_CP的上升沿, SDA 口上的数据移入寄存器, 在SH_CP的第9个上升沿, 数据开始从QS 移出。如果把第一个74HC595 的QS 和第二个74HC595 的SDA 相接, 数据即移入第二个74HC595 中, 照此一个一个接下去, 可接任意多个。数据全部送完后, 给ST_CP 一个上升沿, 寄存器中的数据即置入锁存器。此时如果EN 为低电平, 数据即从并口Q0~Q7 输出, 把Q0~Q7 与LED 的8 段相接, LED 就可以实现显示了。要想软件改变LED 的亮度, 只需改变EN 的占空比就行了。。LED 的亮度用PR1~ PR3 的阻值来控制。P1 口的P115 、P116 、P117 用来控制LED 的显示,分别接到ST_CP、SH_CP和SDA 脚。
实验内容:
按下图连接器件:
程序如下所示:
#include <reg52.h>
#include <intrins.h>
#define uchar unsigned char
#define uint unsigned int
sbit SDA= P1^1;
sbit SHIFT = P1^2;
sbit ST = P1^0;
#define NOP _nop_()
uchar led[] = {0x5b,0x3f,0x3f,0x6f};
uchar select[] = {0x0fe,0xfd,0xfb,0xf7};
uchar i=0;
void Init()
{
SDA = 0;
SHIFT = 0;
ST = 0;
}
void delay()
{
uchar jj;
for(jj=0;jj<200;jj++);
while(jj--);
}
void display(uchar dat)
{
uchar ii;
uchar sdata=dat;
for(ii=0;ii<8;ii++)
{
if(sdata&0x80)SDA=1;
else SDA = 0;
sdata<<=1;
SHIFT =0;
NOP;
NOP;
SHIFT = 1;
NOP;
NOP;
}
ST = 1;
NOP;
NOP;
ST = 0;
}
void main()
{
Init();
while(1){
delay();
delay();
P2 = select[i];
display(led[i]);
i=(i+1)%4;
}
}