可变带宽OTA—C低通滤波器电路
时间:02-14 15:05 阅读:1393次
*温馨提示:点击图片可以放大观看高清大图
简介:采用跨导运算放大器实现了一种可变带宽低通滤波器,阻带抑制率大于35 dB,带内波纹小于0.5 dB,最高带宽为26 MHz,在低中频结构接收器相对较高。滤波器带宽可由外部可编程电路调节变化,本文设计电路具有电路简单,易于高集成,便于后期维护等优点,是OTA电路设计的未来发展趋势,有着广泛的应用前景。
实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA—C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。仿真结果表明,该滤波器带宽的可调范围为1~26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18μm CMOS工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。射频接收机质量被认为是影响整个系统成本和性能的主要因素。随着无线通信移动终端朝着小尺寸、低成本、低功耗方向发展,射频前端系统中的集成滤波器设计显得十分重要。其中,基于CMOS工艺的设计方案以其成本和功耗的优势,已成为有源滤波器设计选择的主流方向。
滤波器电路
梯形结构电路的元件参数灵敏度低,实现时不用考虑传输函数零极点的配对,设计方便,在宽带滤波器设计中有一定的优越性。跳耦结构电路具有较小的寄生敏感度和较大的动态范围。本文低通滤波器设计采用信号流程图方式实现梯形跳耦结构。本文考虑到无源LC滤波电路有优良的灵敏度特性,并且LC电路设计理论非常成熟。所以本文采用LC梯形电路法设计电路。首先根据滤波器指标参数,查表得LC梯形滤波器电路和参数,后对此电路做状态变量分析,写出其电路电压方程,依据状态方程得出相应的信号流图,然后应用跨导运放和电容实现型号流图中的积分器,模拟状态变量。可实现无源LC梯形滤波器到跨导-电容滤波器的模拟变化。查阅滤波器工具书得出,需要采用七阶Butterworth低通滤波器。本文以-3 dB带宽为26 MHz时,50 MHz幅频曲线以-40 dB予以说明。根据上述性能要求,查阅滤波器工具书得出,需要采用七阶Butterworth低通滤波器,原型电路如图1所示。
图2 电路的框图形式
类似式(1)、式(2)可以得V3~V7的状态方程。图3电路为最终实现电路。模拟电阻Ⅲ采用跨导Gm,实现负反馈运放等效代替,电路仅由跨导运放和电容元件来实现七阶Butterworth滤波器,其中OTA跨导值的大小可以通过其偏置电流得到精确调节。
图3 梯形电路跳耦电路实现图
跨导单元设计
线性度和带宽是跨导运算放大器设计考虑的两个主要方面。带宽的大小和跨导值成正比,但增大跨导值会使芯片功耗变大,对于相同的传输函数,增大跨导值时,电容值也需要相应的增大,从而增大了芯片面积。同时跨导值减小时,电容值也要减小,这对版图匹配造成影响。
本文采用经典的交叉耦合差动式COMS跨导器,其I/V传输特性有理想的线性关系。图4中,M1和M2偏置电流为I;M3和M4偏置电流为 nI。电路设计中,M1~M4有相同的沟道长度L,M3,M4的沟道宽度W=nL。设Y1=i1/I,Y2=i2/I,X=Vid/Vb,则
图4 交叉耦合COMS跨导器
可见,在电源电压确定的情况下,OTA的跨导值与输入数据Rx成平方根倒数关系,跨导值随着输入数据的增大而减小。通过改写输入数据RDAC的值,即可实现26种(全零状态禁用)变化电阻,达到改变偏置电流,产生跨导值的变化,最终实现滤波器带宽的调节。