时钟电路对单片机系统功耗的影响以及相应的使用方法
时间:09-22 09:13 阅读:801次
*温馨提示:点击图片可以放大观看高清大图
简介:本文介绍了时钟电路对单片机系统影响的原理,同时提出了低功耗系统设计中的建议。
时钟的选择对于系统功耗相当敏感,设计者需要注意两个方面的问题:
第一是系统总线频率应当尽量低。单片机内部的总电流消耗可分为两部分——运行电流和漏电流。理想的CMOS开关电路,在保持输出状态不变时,是不消耗功率的。例如,典型的CMOS反相器电路,如图2所示,当输入端为零时,输出端为1,P晶体管导通,N晶体管截止,没有电流流过。而实际上,由于N晶体管存在一定漏电流,且随集成度提高,管基越薄,漏电流会加大。温度升高,CMOS翻转阈电压会降低,而漏电流则随环境温度的增高变大。在单片机运行时,开关电路不断由“1”变“0”、由“0”变“1”,消耗的功率是由单片机运行引起的,我们称之为“运行电流”。如图1所示,在两只晶体管互相变换导通、截止状态时,由于两只管子的开关延迟时间不可能完全一致,在某一瞬间会有两只管子同时导通的情况,此时电源到地之间会有一个瞬间较大的电流,这是单片机运行电流的主要来源。可以看出,运行电流几乎是和单片机的时钟频率成正比的,因此尽量降低系统时钟的运行频率可以有效地降低系统功耗。
图1典型的CMOS反相器
第二是时钟方案,也就是是否使用锁相环、使用外部晶振还是内部晶振等问题。新一代的单片机,如飞思卡尔的HCS08系列单片机,片内带有内部晶振,可以直接作为时钟源。使用片内晶振的优点是可以省掉片外晶振,降低系统的硬件成本;缺点是片内晶振的精度不高(误差一般在25%左右,即使校准之后也可能有2%的相对误差),而且会增加系统的功耗。
现代单片机普遍采用锁相环技术,使单片机的时钟频率可由程序控制。锁相环允许用户在片外使用频率较低的晶振,可以很大地减小板级噪声;而且,由于时钟频率可由程序控制,系统时钟可以在一个很宽的范围内调整,总线频率往往能升得很高。但是,使用锁相环也会带来额外的功率消耗。单就时钟方案来讲,使用外部晶振且不使用锁相环是功率消耗最小的一种。