1 引言
陶瓷生产是一门古老、历史悠久的传统工业,陶瓷辊道窑的生产过程均采用传统的手工操作,炉温波动幅度大,造成瓷砖质量不高,甚至出现产品不合格的情况,再加上现场环境条件差,工人的劳动强度大,操作员工增加,对企业的经济效益影响较大。为了提高陶瓷生产水平,根据企业的实际需求和工厂提出的工艺要求,我们研制了一套分布式智能控制系统对辊道窑炉温度进行集中监控,从而提高瓷砖的质量与产量,改善工人的劳动条件,提高生产效率。
2 辊道窑温度分布式控制系统的组成及原理
为分散控制系统,分散型控制系统,集散控制系统。行业内业称4C技术既Control控制技术;Computer计算机技术;Communication 通信技术;Cathode RayTubeCRT显示技术。分布式控制系统由多台计算机分别控制生产过程中多个控制回路,同时又可集中获取数据、集中管理和集中控制的自动控制系统 。分布式控制系统采用微处理机分别控制各个回路,而用中小型工业控制计算机或高性能的微处理机实施上一级的控制 。各回路之间和上下级之间通过高速数据通道交换信息。分布式控制系统具有数据获取、直接数字控制、人机交互以及监控和管理等功能。分布式控制系统是在计算机监督控制系统、直接数字控制系统和计算机多级控制系统的基础上发展起来的,是生产过程的一种比较完善的控制与管理系统。
该系统由上位机与下位机两大部分组成,上位机与下位机通过RS-485通讯协议完成信息的传递,上位机由586微机加RS232C/RS485转换器构成,位于集中控制室,完成向下位机(现场控制器)发送命令、接收现场控制器数据及数据分析、存储、报表打印、显示等功能。上位机是指人可以直接发出操控命令的计算机,一般是PC,屏幕上显示各种信号变化(液压,水位,温度等)。下位机是直接控制设备获取设备状况的计算机,一般是PLC/单片机之类的。上位机发出的命令首先给下位机,下位机再根据此命令解释成相应时序信号直接控制相应设备。下位机不时读取设备状态数据(一般为模拟量),转换成数字信号反馈给上位机。6个控制器通过电动比例调节阀调整喷油量达到分别控制窑炉内6点温度,从而保证窑炉烧成带温度的恒定,该系统特别适合于象辊道窑这样的小规模DCS系统。
3 智能温度控制器的设计
3.1 概述
常规PID控制器由于具有原理简单,稳定性好,易于实现等优点,因而在过程控制中得到广泛应用,但在辊道窑温度控制系统中,工业生产过程中,对于生产装置的温度、压力、流量、液位等工艺变量常常要求维持在一定的数值上,或按一定的规律变化,以满足生产工艺的要求。PID控制器是根据PID控制原理对整个控制系统进行偏差调节,从而使被控变量的实际值与工艺要求的预定值一致。不同的控制规律适用于不同的生产过程,必须合理选择相应的控制规律,否则PID控制器将达不到预期的控制效果。PID 控制器是一个在工业控制应用中常见的反馈回路部件。这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。和其他简单的控制运算不同,PID控制器可以根据历史数据和差别的出现率来调整输入值,这样可以使系统更加准确,更加稳定。可以通过数学的方法证明,在其他控制方法导致系统有稳定误差或过程反复的情况下,为此,在PID控制器设计时,首先采用基于继电反馈的整定方法,确定PID调节器参数,再对PID参数实行实时Fuzzy校正,使其具有自适应功能,从而满足系统变工况的要求。
3.2 温控器的控制策略
3.2.1 PID参数自整定
根据继电振荡原理,继电反馈系统框图如图1所示。若继电器输出幅度为b,则根据非线性理论,继电器的描述函数为 ,其中误差信号的幅度为不断调整继电特性的幅值,使系统发生自振荡,然后测取振荡周期与幅度,便可得出临界增益 与临界周期 。利用这两个参数,根据Ziegler-Nichols方法,可得出PID参数。PID参数整定完毕后,此参数作为PID控制器Fuzzy校正的初值,并自动转入PID参数Fuzzy校正控制。一般在系统初次投入时整定,并把整定值存入EEPROM中。
其中 Kp为比例系数;Ti为积分时间常数;Td为微分时间常数。
3.2.2 PID参数实时Fuzzy校正
根据上述自整定得出的PID参数,当辊道窑炉参数或工况发生变化时,系统的性能将下降,甚至无法满足工艺要求,所以必须对PID参数进行在线调整。目前较多地采用自校正PID算法,但这种方法是基于被控对象精确的数学模型,为此,我们采用模糊控制技术,模糊控制技术是近代控制理论中的一种高级策略和新颖技术。模糊控制技术基于模糊数学理论,通过模拟人的近似推理和综合决策过程,使控制算法的可控性、适应性和合理性提高,成为智能控制技术的一个重要分支。根据系统运行过程中的偏差绝对值 及偏差的积累绝对值 ,对PID参数进行实时校正,当参数或工况发生变化时,逐步调整值,使系统控制性能处于最优状态。的修正规则如下:
(1)比例系数 增大,系统响应速度加快,稳态误差减小,因此在偏差大的情况下,要增大 值。但是 过大会使系统产生超调,甚至不稳定,因此在偏差小的情况下,要减小 值。将偏差绝对值 的模糊子集取为很大(VB)、大(B)、中(M)、小(S)和很小(VS), 的模糊子集取为PB、PS、O、NS、NB,则 的修正量 的Fuzzy控制规则如表1所示。其中, 的基本论域为[0,10],分为11个量化等级,即 ={0,1,2,3,4,5,6,7,8,9,10}, 的基本论域为[-0.5,+0.5],分为11个等级即 ={-0.5,-0.4,-0.3,-0.2,-0.1,0,0.1,0.2,0.3,0.4,0.5}。
(2)在PID控制器中,积分作用是为了消除稳态误差,加强积分作用(减小 )有利于减小稳态误差,但过强的积分作用会引起积分饱和,使系统超调加大,甚至引起振荡。因此,在调节过程中的初期,即误差的积累 较小时,应减弱积分的作用(加大 )。而在调节过程的后期,即误差累积 较大时,应加强积分作用(减小 )。将误差累积绝对值 的模糊子集取为VB、B、M、S和VS, 的模糊子集取为PB、PS、O、NS、NB,则 的修正量 的Fuzzy控制规则如表2所示。其中, 的基本论域为[0,10],分为11个量化等级,即 ={0,1,2,3,4,5,6,7,8,9,10}, 的基本论域为[-5,+5],分为11个量化等级即 ={-5,-4,-3,-2,-1,0,1,2,3,4,5}。
(3)微分在PID控制中的作用主要是改善系统的动态性能,控制超调。对于变工况且不确定系统,在调节过程的初期,即误差的累积绝对值 较小时,应加强微分的作用(即增大 ),而在调节过程的后期,即误差累积的绝对值 较大时,应减弱微分的作用(即减小 ),将 的模糊子集取为PB、PS、O、NS、NB,则 的修正量 的Fuzzy控制规则如表2所示。其中, 的的基本论域为[-1,1],分为11个量化等级即 ={-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1}。
智能温度控制系统结构图如图2所示,当要整定参数时把开关打在T,参数整定完毕,切换到自动位置A,参数自调整控制器对控制对象进行调节。
4 智能控制器的实现
4.1 控制器的硬件系统
控制器的硬件主要由微处理机系统,输入通道,输出通道,键盘及显示等部分组成。
(1)微处理机系统:由8031单片机,2764 EPROM(用于存放监控及控制程序),2816EEPROM(用于存放自整定的参数及温度设定值),译码电路与锁存器等组成。
(2)输入通道:由热电偶冷端补偿电路,放大电路(OP07,741),V/F,光电耦合,计数器,定时器等组成。热电偶是温度测量仪表中常用的测温元件,是由两种不同成分的导体两端接合成回路时,当两接合点 热电偶温度不同时,就会在回路内产生热电流。如果热电偶的工作端与参比端存有温差时,显示仪表将会指示出热电偶产生的热电势所对应的温度值。热电偶的热电动热将随着测量端温度升高而增长,它的大小只与热电偶材料和两端的温度有关,与热电极的长度、直径无关。各种热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要部分组成,通常和显示仪表,记录仪表和电子调节器配套使用。采用两级放大器可将毫伏级信号放大到需要幅度0~5V,由上V/F转换成频率量,再通过软件的定时,计数完成A/D转换工作。
(3)输出通道:由D/A转换器,V/I转换器,输出锁存器和光电隔离电路组成。D/A转换器将输出转换为0~5V的电压信号,经V/I转换器输出0~10mA标准电流信号。
(4)键盘及显示部分:由8279,4个键与4个LED组成。
4.2 控制器的软件设计
控制器的软件主要由监控软件与控制软件组成,其软件框图如图3所示
4.3 调度与应用
为了不影响窑炉的正常生产,在PID参数整定前,先手动调节炉温到正常工作点(1200℃)附近,并设定电动比例调节阀的开度在工作点附近±10% 范围内变化,使PID调节器参数整定时,炉温变化幅度较小,如图4所示,其中前10 min为参数整定时间。温度的变化情况,采样周期t=15s。
该系统已在现场长期连续运行,性能稳定,可靠性高,采用温度智能控制后,在设定温度1200℃时,温度波动范围从原来手动控制时的 ℃降为 ℃,(见图4),说明该系统具有良好的控制性能。
5 结论
(1)由于采用分布式控制系统,上位机为586微机,软件资源丰富,可进行集中监控、画面显示、参数设定等工作,下位机能方便地与上位机交换信息,也可以单独运行,对现场进行实时控制,系统可靠性高,且价格低廉。
(2)温度控制器采用PID参数自整定技术,可以大大缩短现场调试时间,特别适合于缺乏自动化工程技术人员的工厂。
(3)对于无法确定精确数学模型及变工况(象燃油炉)控制对象,采用PID控制时,先采用自整定技术确定PID参数的初值,然后根据实时数据,对PID参数进行在线Fuzzy调整,是一种非常实用且有效的控制策略。