在开发低功耗的智能两线制变送器时,仪器内部的微功率电源设计十分关键。首先,一般情况下具有微处理器的智能变送器要满足微控制器、A/D、D/A及通讯电路的供电,需要比普通4~20mA变送器更大的功率,需要内部电源具有更高的供电效率。另外,对于电容传感器和热电偶,还要考虑接地或者传感器可能碰壳(接地)的情况,所设计的变送器电路必须是输入与输出相隔离的,这样才能够保证后续控制系统的正常工作和抗共模干扰能力。由于外部电路为两线制变送器系统提供的工作电流最大4mA,这些具体要求给系统电源的设计带来了很大的难度和挑战。设计的微输入功率的隔离式两线制变送器电源采用全集成电路设计,具有结构简单、性能稳定、成本低廉的特点。它以降落在两线制变送器上的12~35VDC为输入电源,设计了简洁的恒流稳压前端输入电路,固定消耗315mA电流,提供了两组互相隔离的3V电源。与输入不隔离的一组最大具有5mA负载能力,与输入隔离的一组最大具有3mA负载能力,完全满足输入与输出隔离型的两线制变送器对电源的要求。
1.整体设计
图1为电源原理图。它由3个主要部分组成:U1、R1和Z1构成的315mA/812V恒流稳压电路;由U2为核心构成的DC/DC变换电路;由L2和U3构成的一组隔离电源。系统设计力求精简、高集成度,并且所有元器件都选择了能够工作于-40~85℃扩展工业级温度区间的产品,能够保证电源可靠应用于现场变送器。
图1电源原理图
1.1恒流稳压电路
作为给两线制变送器供电的电源,必须保证最大工作电流不超过4mA,考虑到变送器需要有一定的低零点输出指示,一般系统供电标准为315mA以下,同时,这类电源必须具有恒流特性,以保证两线制变送器的工作特性。设计恒流源的方法很多,该设计采用了三端可调稳压器LM317L来设计恒流源[2].
LM317L是三端可调稳压器,图2是它的典型应用。图2(a)是它作为标准稳压器时的基本应用,此时在它的输出端与调整端之间固定产生一个稳定的压差,典型值为1125V,因此,它的输出电压VO=1125(1+Ra/Rb)。利用LM317的输出端于调整端之间具有稳定压差的特性,它也经常被用来设计恒流源,图2(b)是典型应用电路,它产生的电流大小为I=1125/R.参见图1,设计中R1取值为360Ω,故可以获得约315mA的恒流。考虑到后续的DC/DC芯片的工作电压范围为4~11V,同时考虑到实际电源的输出功率大小,使用了1个812V的稳压管Z1完成并联稳压功能,同时为U2提供稳定的入口电压,条件是U2总消耗电流小于314mA,Z1必须选择在小于011mA击穿电流时即可稳定的优质稳压管(可选用Philips公司的产品,最低静态稳定电流仅几十μA)。
图2 LM317L典型应用图
电路前端的D1为防反相二极管,一般采用1N4148即可。熔丝选择了PTC器件自恢复保险丝,指标为100mA/60V,保证电源故障时不影响外部供电电源。
由于电源的最终应用场合为现场变送器,它所处的环境温度变化范围是比较大的,因此必须考虑到温度漂移的因素。电源的主要温漂就是恒流的漂移,产生的原因是LM317L的基准压差的温度漂移以及恒流电阻R1的温度漂移。实际电路中,R1选择了温度系数低于5×10-6/℃的产品,温漂可以忽略不计。LM317L的基准压差与温度关系曲线见图3,在-40~85℃的温度范围内,温度的影响较明显,在高精度应用时必须进行补偿。考虑到电源的实际应用都是针对智能变送器的,在智能变送器系统中,出于对传感器校正以及线路补偿等目的,变送器电路中都会设计温度传感器,如LM75或者TC77等数字测温芯片,故此电路没有设计专门的硬件补偿,而是提供了一个软件补偿的算法,用户在应用电源的时候可以采用它对电源的温度漂移进行补偿。
图3 LM317L基准温度特性曲线图
如图3所示,LM317L的基准压差与温度关系曲线近似于简单的三次多项式函数关系形式,只需要设计Y轴反向的补偿函数即可,系统以20℃为补偿基点进行校准,具体补偿公式为ΔI=A(t-20)2+B(t-20)3式中t为环境温度。
系数A和B可以依据实际采用的LM317L芯片手册提供的基准电压温度曲线导出,最简单的做法就是取-20℃和60℃2个点,获取2个二元一次方程来求解A和B.
这样就能很容易获取一个拟合程度比较好的补偿曲线近似函数,补偿后的温度漂移影响基本可以忽略不计。112 DC/DC变换电路
由于电源最大的设计难点是输入功率极小,因此对于隔离端的设计不能采用功耗比较大的隔离反馈模式,实际电路采用了副边开环的方式。具体使用MAX639来设计DC/DC核心电路,实现了较高的电能效率转换,在315mA供电输入时可以提供远大于315mA的电流给电路供电,从而解决了智能系统大电流的需求。
根据系统的要求,核心芯片必须具备微功耗、高效率、输入电压范围宽,以及外围器件简单等优点。图1中DC/DC芯片为MAXIM公司的MAX639[3],它是降压型DC/DC转换芯片,它的主要特点:输入电压范围宽(4~1115V);转换效率高(可达90%以上);静态电流低(10μA);可固定输出或可调输出。
电路设计为可调输出,输出设定为3V.输出电流
Io=(Vi Iiη)/Vo
式中:Vi为输入电压;Ii为输入电流;η为转换效率;Vo为输出电压。
电路中Vi=812V,Ii=315mA,η=90%,Vo=3V,在不考虑隔离副边输出时,可获得的Io约为816mA,这个输出电流在微功耗系统中已经是比较大的供给能力了。以上Io的计算只是理论上的,要想在315mA/812V这样微输入功率的条件下使电路可靠启动,并获得90%以上的转换效率需要对电路进行非常细致的设计。
DC/DC的可靠启动是由许多条件制约的,必要的条件就是必须提供足够大的启动脉冲电流。在Z1旁并联了1只10μF的钽电解电容C2提供启动保证,同时也能够有效避免DC/DC的工作对LM317的恒流特性产生干扰。
电感L1对DC/DC的转换效率起决定作用,MAXIM手册提供的算法是L1=50/IO,L1的单位是μH,IO的单位是A.实际电路中L1的取值为4mH,能够保证电路在最大输出功率下稳定工作,同时又能够保证足够高的转换效率。需要强调的是,如果L1偏小,电路的转换效率将降低,启动电流增大,甚至无法启动。如果L1偏大,则会造成输出能力下降,同时DC/DC电路将可能产生振荡。
为保证电路的稳定,DC/DC芯片对输出电容C3有着很高的要求,最重要的一点就是它的等效串联电阻ESR必须足够小[4],同时要有足够的容量。电路设计采用了性能优良的10μF钽电解电容器,能够保证稳定的输出。
DC/DC芯片是该电路的核心,实际电路线路布局对电路的性能影响非常大,尤其对输出的纹波有直接影响,不合理的电路板布局设计甚至会在输出带来额外的寄生振荡,设计时必须注意。最重要的原则就是C2与LI引线端要尽量靠近MAX639引脚,C2、D2、MAX639、R3以及C3的接地引脚尽量靠近,尽量使用粗线,最好使用地平面。
DC/DC的输入电压设定为812V,由Z1保证,如果实际的变送器要求的电源功率比较小,Z1则可以选择更低的稳压值,这样能够使整个电源对入口电压要求更低。设计的入口电压低限为12V,如果Z1选择612V,则入口低限电压可以降低到10V.
1.3隔离电源绕组
电路的主要特色是提供了一个隔离的供电绕组,它采用了在DC/DC输出储能电感上"窃"电的方法。如图1所示,L2就是这个隔离电源的供电线圈。由于这组隔离电源是在DC/DC的储能线圈上加载的副线圈,结构为开环形式,因此它的输出稳定性相对比较差,在整体设计时必须从多角度统筹考虑,才能够获得满意的效果。
首先要确定它的输出功率。由于采用在储能线圈上"窃"电的方法,它的输出功率是受限制的,只能小于原边输出功率。这组隔离电源输出在具体变送器应用时主要为传感器转换电路、前端A/D转换器和隔离电路供电。差动电容传感器、热电偶传感器及热电阻等传感器的模拟测量电路耗电是μA级的,前端A/D一般采用多积分型或者Σ-Δ型A/D,耗电小于1mA,低功耗光电隔离整体也能够作到1mA以下。因此,隔离绕组只要保证能提供3mA的电流就能够满足实际需要,已经计算出在无副绕组情况下,电路最大输出为816mA,显然在有副绕组的情况下,完全可以为它提供3mA电流。
其次,隔离绕组由于采用开环结构,原边负载的变化直接影响副边的稳定性,因此电路在实际使用时,要求原边的电路系统在运行时需要尽可能保证功耗的稳定性,尽量避免对功耗比较大的器件使用工作/休眠轮换的方式。电路能够为原边提供最大5mA的使用电流,完全能够满足常用微功耗MCU控制系统的工作,不需要使用休眠方式,这样做还能够获得最大的系统运行速度。
最后,由于隔离电源绕组主要为前端小信号模拟电路供电,对电源的质量要求较高,因此设计时将低压差线性稳压器和DC/DC转换器配合使用。将经DC/DC转换的输出低电压经过低压差线性稳压器(LDO)的降噪和稳压处理,这样取长补短,既可以提高供电效率,又可满足纹波电压小的要求,具体LDO采用了MAX1726芯片[5],它的工作电流仅2μA,输出为313V.稳压前的输出幅度取决于原边的输出功率和L2的电感量,经试验确定,L2为3mH,当原边电流在3~5mA之间变化,副边电流为2mA时,稳压前电压在318~418V之间波动,满足LDO稳压对输入的要求。
2.结论
两线制变送器隔离式电源具有使用温度范围宽、输入电压范围宽、输出效率高、集成度高、隔离性能好、体积小、成本低等特点,是一种稳定可靠的两线制变送器电源,能够满足各种具有复杂要求的两线制变送器的使用。该电源目前已经在一体化智能温度变送器上获得应用,经过长时间的现场应用考验,性能优良,完全达到了隔离型两线制变送器的使用要求。