五大招降低LCD噪声
设计者要确实降低影响触控面板控制器的显示噪声,可利用几种方法,包括削减噪声强度、避开噪声的频率、导入数字滤波器、改良触控传感器设计或加强触控屏幕与LCD面板的同步化。
一般来说,设计工程师可以用一层强固的ITO覆盖住整个显示器,此遮蔽层置放于显示器与触控面板传感器之间,直接链接电路接地端,因此显示噪声会直接传到接地端而不是触控面板控制器。遮蔽层在减少噪声方面通常效率颇高,不过,由于会增加触控面板制造成本,加上会减少面板的透光度使影像质量略受影响,因此较不受业者青睐。相形之下,挑选适合的运作频率,让触控控制器的频率不同于LCD噪声频率则是最佳选项之一。对此种方法而言,导入能应付大量尖峰噪声的触控控制器,并且避免触控屏幕感测电路过度饱和,有助达成降噪声的目标。
此外,窄频接收器有助于配合噪声尖波(Spikes)进行调整,还能帮助在撷取到的波形产生快速傅立叶变换(FFT),以便了解应把触控屏幕运作频率设定在哪里,如图5显示DCVCOM时域波形的FFT。目前触控控制器制造商也以开发出许多自动工具,能帮助挑选理想的运作频率,其中许多工具能扫描触控屏幕运作频率,还能同时监视噪声。
图5 DCVCOM耦合噪声与频率FFT关系图
此外,数字滤波器对降低噪声亦有很大帮助。工程师有许多线性与非线性滤波器可挑选,对不同的应用各有优缺点。线性滤波器方面,传统无限脉冲响应(Infinite Impulse Response, IIR)或有限脉冲响应(Finite Impulse Response, FIR)滤波器,虽然在降低噪声方面表现不错,但在追踪屏幕上手指碰触点的速度会有点迟钝。
如今业界已针对这些滤波器进行许多改良,带来更好的手指追踪性能。其他非线性滤波器也能降低噪声,尤其针对含有高强度但不常出现的噪声尖波的脉冲噪声。另外有少数滤波器能聪明的辨识LCD噪声,并把噪声从实际信号分离出来。含有硬件滤波器的触控控制器会为产品加分不少,因能节省噪声处理的时间与功耗。
由于触控传感器对整体产品的效能而言相当重要,因此,许多新型传感器设计也纷纷朝向能降低显示噪声的研发方向迈进。其中一种热门方案就是曼哈顿(Manhattan),取这个名字是因为它的样式酷似纽约曼哈顿地区的街道,为完美的水平与垂直排列(图6)。
图6 曼哈顿触控传感器架构示意图
触控传感器包含发送器(TX)与接收器(RX),所有真正多点触控的传感器都能驱动TX,并在RX上接收信号。在曼哈顿传感器设计中,TX占位相当宽,位置在RX之下;RX则较窄,因为要消除寄生电容以及减少噪声耦合。
总而言之,曼哈顿传感器让TX传感器能削减大部分的噪声,且不会让噪声传到RX,现今业界均采用许多精密的曼哈顿衍生技术。
In-cell实现触控面板与LCD同步化
最后,触控面板与LCD之间的同步化,亦是降低显示噪声的选项之一。事实上,这绝对须仰赖In-Cell设计才能实现。触控面板控制器要进行同步化,可透过监看LCD驱动器的水平与垂直同步信号,分别名为HSYNC(Horizontal Synchronization)与VSYNC(Vertical Synchronization),进一步与LCD面板同步。
值得注意的是,在ACVCOM解决方案中,有些触控面板控制器能直接从触控屏幕传感器挑出噪声,随即开始扫描,不须藉由监看LCD驱动器的HSYNC与VSYNC信号;此种ACVCOM的同步化相当直接,因为基频强度很高且频率很低。
相形之下,DCVCOM就比较困难,因为噪声频率较高,触控面板控制器的扫描与静止期之间需要精准的时序调整。
随着手机做得愈来愈薄,触控面板控制器会暴露在更多的显示噪声下,这是因为显示器与触控屏幕传感器之间有更紧密结合的电容耦合,促使各界更专注于显示器如何运作,显示噪声究竟来自哪里,如何量测显示噪声,以及有哪些降低显示噪声的选项。