1 系统组成及工作原理
无人值守病房监护系统主要由数据采集器、无线射频模块SRWF-106、监控计算机等部分组成,结构示意图如图1所示。
佩戴在病人身上的数据采集器集心率传感器、呼吸频率传感器以及温度传感器等多种生物医学传感器于一体,它可以实时监测病人的心率、呼吸频率以及体温等生理体征参数,并通过铁电存储器记录数据的采集时间,然后通过无线射频模块SRWF-106实时发送到中心病房监控计算机。如果某个病房发送数据的某项指标出现异常,系统会报警提醒监控人员对相关病人采取及时地处理措施,从而比较及时的对病人治疗,保证了病人的安全并提高了监控效率。当然,监控人员也可对监控计算机数据库进行数据索引,有针对性地对某些病人的生理体征参数进行分析,及时更改治疗手段或者提前对病症进行有效的防控,进而最大限度上保证了病人的权益。
2 系统硬件设计
2.1 数据采集器硬件设计
数据采集器佩戴在病人身上,主要完成对病人生理体征参数的采集、处理和存储等功能,由传感器电路、微处理器以及铁电存储器等部分组成。传感器包括温度传感器DSl8820、HK-2000A型集成化脉搏传感器、HXB-2型压电呼吸传感器以及其他待扩展传感器,微处理器选用了PLILIPS公司的高速、低功耗、8位FLASH单片机LPC932,铁电存储器选用RAMTRON公司集成时钟电路的FM31256。数据采集器电气原理图如图2所示。
将连接到数据采集器上的数字温度传感器DSl8B20、HK-2000A型集成化脉搏传感器和HXB-2型压电呼吸传感器分别按要求安装到病人身体的相关部位,然后开启数据采集器,开始采集病人的体征参数,连同数据采集的时间一并存入铁电存储器FM31256,同时启动无线射频模块SRWF-106,实时地将病床号、采集时间以及监测数据发送出去,红指示灯D3闪烁标示数据传输成功。当供电电池电压不足,单片机LPC932会发生比较中断,这时黄指示灯D4会闪烁指示,提醒工作人员更换电池,提高了数据采集器的工作可靠性。
2.2 无线射频模块SRWF-106的使用
SRWF-106模块提供两个串口,COMl(CONl的Pin3、Pin4)固定为TLL电平的UART串行口;COM2(C0Nl的Pin6、Pin7)可通过跳线J1的D位来选择接口方式,包括RS 485和RS 232两种。本设计中,数据采集器和SRWF-106之间为TTL电平,而监控计算机与SRWF-106间为RS 232。SRWF-106模块提供1 200 b/s,2 400 b/s,4 800 b/s,9 600 b/s,14 400 b/s,19 200 b/s等接口波特率,波特率的设定可通过改变模块反面的焊盘跳线(J2~J4)的状态来确定。模块工作电压为+4.5~+5.5 V。为有效节约功耗,模块可设置为休眠状态。3 通信协议的设计
无线通信系统中,由于供电、空间噪声以及传输路径等因素的影响,数据传播过程中很容易受到干扰,造成通信失败,因而需要设计一种传输协议,保证在这种不可靠的物理链路上建立起可靠的数据连接。本系统中,数据采集器与监控计算机是一个简单的多点对一点通信。
3.1 波特率设置及通信方式的选择
考虑到无线射频模块SRWF-106自身的特点并兼顾到数据通信的速度和稳定性,本设计采用9 600 b/s。由于通信是多对一的关系,串口选择工作方式3。
3.2 数据校验方式的确定
使用无线通信技术传输数据时,很容易遇上干扰,使传输数据发生改变,从而导致传输错误。考虑到系统的实际要求,本设计采用8位的CRC(循环冗余校验)校验方式。
CRC校验和的计算是一种循环计算。从数学角度看,CRC校验和是用生成多项式(算法规则)去除一个多项式(由数据块表示),CRC校验为相除后所得的余项。CRC校验是对要传送的一个数据块附加一些校验位这些校验位(CRC校验位)由该数据块算出,并随同数据块一并传送。在接收端,对收到的数据块重新按规定的算法计算CRC校验和,从而可以判别数据传输过程是否出错。
本系统中的CRC校验子程序如下:
3.3 通信数据的编码
为保证数据传输的可靠性和准确性,本设计采用的数据帧格式如表1所示。其中,前两字节为起始同步信号,地址码占用一个字节(O~255),用它来标示不同床位号;待发数据包括:心率(1 B)、呼吸频率(1 B)、体温(2 B)和采集时间(7 B);校验码为8位的CRC校验码。传输顺序为:心率、呼吸频率、体温(高位在前,低位在后)、采集时间(依次为:秒、分、小时、日、月、年);当发送应答命令时,待发数据为2 B的0xcc或者0xBB。
4 计算机软件系统设计
在Windows操作平台上采用可视化程序设计语言Visual Basic:设计系统的Database Server,Visual Basic是面向对象的可视化快速应用开发工具,具有功能强大、界面友好、简便易用和代码执行速度快等优点。该系统具有数据索引、系统设置、报表等功能。根据病人病情的不同,医生可以制订不同的监测标准。图3是系统操作界面的截图(包含部分实验数据)。
5 结语
基于无线射频技术的无人值守病房监护系统省略了复杂的布线,安装方便、操作简单、工作可靠、故障率低、易于维护,一旦进入实用阶段必将为医院节省经营成本,提高医疗服务质量和管理水平,最终使患者及医务人员真正受益,这对于加快我国医院的智能化建设进程具有重要意义。