雷电的特点是电压上升非常快(10μs以内),峰值电压高(数万至数百万伏),电流大(几十至几百千安),维持时间较短(几十至几百微秒),传输速度快(以光速传播),能量非常巨大,是 浪涌电压中最具破坏力的一种。对于浪涌来说,源头是大功率电气设备,例如电梯、空调和冰箱。这些大功率设备在启动和关闭压缩机和电动机等部件时需要大量的 电能。这种切换操作会产生突然且短暂的电力需求,从而扰乱电压的稳定。虽然这些浪涌的影响远不及恐怖的闪电,但是它们的强度也可以立即或慢慢损坏设备元 件,这种损坏在很多建筑物的电力系统中都经常发生。随着相关设备对防雷要求的日益严格,安装防雷器件抑制线路上的浪涌和瞬时过电压、泄放线路上的过电流成为现代防雷技术的重要环节之一。
瞬态抑制二极管:
TVS二极管为电压箝位型工作方式,亚纳秒级的响应速度。TVS二极管有多种封装方式,可满足不同场合的需要。当TVS二极管上的电压超过一定的幅度时,器件迅速导通,通过PN结反向过压雪崩击穿将浪涌能量泄放掉。由于这类器件导通后阻抗很小,因此它的箝位电压很平坦,并且很接近工作电压。
压敏电阻:
压 敏电阻由金属氧化物(主要是氧化锌)材料组成,属箝位型器件,其特性与两只背对背联接的稳压管非常相似,有着毫微秒级的响应速度。压敏电阻对瞬变信号的吸 收能力与其体积成正比:其厚度正比于电压;面积正比于电流。压敏电阻是目前在电子产品中使用最广泛的浪涌抑制器件。当压敏电阻上的电压超过一定幅度时,电 阻的阻值大幅度降低,从而将浪涌能量泄放掉。在浪涌电压作用下,导通后的压敏电阻上的电压(一般称为箝位电压),等于流过压敏电阻的电流乘以压敏电阻的阻 值,因此在浪涌电流的峰值处箝位电压达到最高。
每一块压敏电阻从制成时就有它的一定的开关电压,当加在压敏电阻两端的电压低于该数值时,压敏电阻呈现高阻值状态,如果把它并联在电路上,该阀片呈现断路状态;当加在压敏电阻两端的电压低于该数值时,压敏电阻被击穿,呈现低阻值,甚至接近短路状态。
气体放电管:
气 体放电管采用陶瓷密闭封装,内部由两个或数个带间隙的金属电极,充以惰性气体(氩气或氖气)构成。当加到两电极端的电压达到使气体放电管内的气体击穿时, 气体放电管便开始放电,器件变为短路状态,使电极两端的电压不超过击穿电压。气体放电管一旦导通后,它两端的电压会很低。气体放电管有两极和三极之分,可 分别用于线间和线-地间的保护。
无 论是直流电源的防雷还是各种信号的防雷,陶瓷气体放电管都能起到很好的防护作用。其最大的特点是通流量大,级间电容小,绝缘电阻高,击穿电压可选范围大。 当加到两电极端的电压达到使气体放电管内的气体击穿时,气体放电管开始放电,由高阻抗变成低阻抗,使浪涌电压迅速短路至接近零电压,并将过电流释放入地, 从而对后续电路起到保护作用。
气体放电管与压敏电阻串联使用:
气体放电管和压敏电阻都不适合单独在交流电源线上使用。一个实用的方案是将气体放电管与 压敏电阻串联起来使用。如果同时在压敏电阻上并联一个电容,浪涌电压到来时,可以更快地将电压加到气体放电管上,缩短导通时间。这种气体放电管与压敏电阻 的组合除了可以避免上述缺点以外,还有一个好处就是可以降低限幅电压值。可以使用导通电压较低的压敏电阻,从而可以降低限幅电压值。