现代工业环境中微控制器关键应用的几个实例(1)
时间:12-13 00:03 阅读:900次
*温馨提示:点击图片可以放大观看高清大图
简介:就微控制器在行业中的设计和应用来说,没有哪个行业像工业自动化和控制领域发展得如此迅速。由于中国及亚洲其它地区主要制造工厂自动化程度的提高,新技术被用来提高效率,因此对制造成本以及产品成本有重要的影响。
就微控制器在行业中的设计和应用来说,没有哪个行业像工业自动化和控制领域发展得如此迅速。由于中国及亚洲其它地区主要制造工厂自动化程度的提高,新技术被用来提高效率,因此对制造成本以及产品成本有重要的影响。尽管集中控制可以改善任何特定制造工艺的整体可视性,但是可能并不适合那些响应延时和处理延迟会导致故障的一些关键应用。
本文将介绍这种关键应用的几个实例,对于智能和处理能力增加到接近工艺节点的应用,会大大的影响效率和可靠性的改善。新的系统级芯片设计提供必要的智能来实现关键的加工测量和这些参数的控制。本文还将讨论几种SoC设计中特殊的改进,解决当今快速增长的工业领域中设计和选择微控制器所面临的设计挑战以及相关的解决方案。
从历史的角度来看,主要依靠那些具有非常有限制造知识的手工业者来制造商品的时代并不遥远,例如鞋、帽子、衣服、器皿以及其它物品。产品的质量和数量取决于特定手工业者的技能和这个行业的人数。最初的生产线实现了产量的增加,随之而来的是提高了产品的质量。任何指定产品的制造被分割成简单的分离步骤,每个步骤由生产线上的一个工人重复地处理,然后这个工人再将半成品转送到下一个操作者。每一个操作人员仅仅接受针对某个特定步骤有限的培训,整体的处理流程由领班或主管负责。使用不熟练的或半熟练的劳力就可以确保质量、数量的快速提高,以及消费产品的可用性。
这些手工业者和早期组装线操作人员的分离步骤在之后实现了机械化,这实现了从人力资本(人)到控制正在日益中央化的本地机械化工艺流水线的转移。随着中央控制的增加,任何特定工艺步骤的可视性(特别是在早期)越来越低,中央控制指令发布到实际执行的延时变得越来越长。某些时候,作为集中控制相关的响应时间延时的产生和影响的函数,整个工艺的吞吐量的影响比每个单独的工艺步骤的限制还要大。
当前的工艺优化策略包括从模拟到数字I/O(传感器和驱动器)的转化、分离工艺步骤的衔接,以及从单一的集中控制拓扑到一个分布式的拓扑结构迁移。由于智能的需求需要更进一步靠近工艺节点以及每个步骤/任务,大型的通用工作站以及处理器让位于更专用的解决方案,例如微控制器和FPGA实现。