本文介绍反激式转换器的一种创新设计方法,它通过先进的控制技术来提升所有功率水平的效率,并实现超低空载功耗。这种设计方法可使制造商以与标准“砖块式”笔记本适配器相当的成本生产出超薄笔记本适配器,同时这些超薄笔记本适配器的性能还超出了能源之星EPS v2.0的功率效率要求和其它全球性能效标准。
图1:典型的反激式转换器电路简图
TOPSwitch-HX在单个IC封装中集成了一个700V MOSFET、MOSFET栅极驱动和一个用户可选择限流点的PWM控制器。在使能状态下,控制器的振荡器在每个时钟周期开始时导通功率MOSFET。当电流达到限流点或达到反馈信号设置的占空比(PWM控制)时,MOSFET才会关断。PWM控制器关断MOSFET后,变压器绕组间的电压开始反向,输出二极管被正向偏置,电流开始流入次级绕组,从而补充输出电容中的电荷并将电流供应给负载。
PWM控制在高功率下可提供较高的效率,但当功率下降到中低水平时,效率将会随之降低。我们可以通过分析开关电源中损耗产生的原因来探究其中的缘由。电源中有两种基本损耗:电流流动产生的阻性损耗,以及电路中电感和电容负载产生的开关损耗。阻性损耗是电流均方根(RMS电流)的函数,因此,当功率水平较高时,阻性损耗就相当大。开关损耗与开关频率成比例。因此一般情况下,当功率较低时,将会出现开关损耗(随频率变化而变化),从而严重限制电源的效率。
通过将开关频率保持在较低水平,可以降低开关损耗,从而提高中低功率下的效率。不过,通过提高频率可以减小某些元件(如变压器、输出电容和后级LC滤波器等)的尺寸,这一点对于设计薄型笔记本适配器很有利。
集成在TOPSwitch-HX器件中的700V MOSFET采用特殊制造技术,能以132kHz频率进行开关,其总体损耗比以更低频率工作的其它同类MOSFET产品低得多。利用132kHz的开关能力,PI研发出一种名为SlimCore的薄型变压器架构,这样就可以在薄型笔记本适配器应用中采用低成本的线绕变压器。
为克服PWM控制常见的效率限制问题,PI在TOPSwitch中采用了包含四种工作模式的多模式PWM引擎,以优化所有功率水平下的开关频率和均方根(RMS)电流(图2)。
图 2:TOPSwitch多模式控制
在高负载条件下,TOPSwitch-HX控制器工作于全频PWM模式,此时用户既可使用尺寸较小的元件,又可实现高效率。随着负载的降低,控制器也降低频率,从而降低开关损耗。它先切换到变频模式,然后切换到频率较低的固定频率PWM模式。当负载极轻时,控制方式从PWM控制模式开始切换,并采用多周期调制控制算法。TOPSwitch-HX能根据经由光耦器馈入到控制引脚的反馈电流(图1),自动在各控制模式间切换。
在高负载条件下,全频PWM模式可实现高效率开关。开关频率选定为132kHz,这样能减小变压器尺寸,同时能使开关频率保持在150kHz步降开关以下,从而符合传导EMI标准。占空比与反馈到控制引脚的控制电流呈线性函数关系并随之减小。
随着输出负载的降低,TOPSwitch-HX控制将切换至变频模式(VFM)。在此模式下,功率MOSFET峰值漏极电流将保持不变,同时开关频率会从132kHz的初始全频(或66kHz,取决于用户的选择)下降到30kHz。占空比随着负载的降低而减小,这一过程通过延长开关脉冲之间的关断时间来完成。开关频率的降低导致开关损耗下降,并可在负载降低时维持电源效率恒定不变。
随着电源负载进一步降低和开关频率达到30kHz,TOPSwitch-HX将切换至固定低频PWM模式。在此模式下,通过调整MOSFET导通时间,可使开关频率保持在音频波段以上并维持输出稳压。开关频率保持恒定不变且占空比减小,工作方式与全频PWM模式相同,都通过缩短MOSFET导通时间来实现。峰值漏极电流从初始的最大值下降到最小值,即设定流限值的25%,这样可以在低功率时保持高效率,避免音频噪声问题。
TOPSwitch-HX进入其最后的工作模式,即多周期调制模式,以支持超低负载要求。当峰值漏极电流降到设定流限值的25%时,控制器便会切换到多周期调制模式。在此模式下,每当根据回路要求传导能量时,功率MOSFET将以30kHz的开关频率开关,且至少持续135μs。这将产生一组至少四到五个的开关脉冲,这些脉冲的峰值初级电流固定为设定流限值的25%,且不受控制环路的影响。135μs的强制性最小开关时间过后,控制器将以逐周期的方式对来自环路的反馈信号作出反应。随后MOSFET关断,直至控制引脚电流降到预设值以下。这种工作模式可使与峰值漏极电流成比例的变压器磁通密度减小,继而将变压器发出的音频噪音降至最低,同时还可以避免6kHz到15kHz之间的开关频率。常采用的反激式转换器磁芯尺寸的自谐振频率通常介于此频率范围内。多周期调制功能可有效地将每个平均开关频率控制在所需的音频范围内,保持输出稳压,同时避免出现前面提到的磁芯自谐振频率。因此,与更为传统的突发工作模式不同的是,多周期调制能确保音频噪音得到有效抑制,同时还可提高工作效率。
上述控制模式为电源设计师提供了内置的设计方法。该方法可在整个功率范围内实现高效率,但对设计师而言,仍还有许多工作要做。电源设计必须要安全地解决所有故障情况和最差情况下的元件容差问题。在以非连续导通模式(DCM)工作的反激式转换器中,输出到负载的功率与开关频率、变压器初级电感量以及峰值初级电流平方均成比例。因此,这三个参数的微小变化便可导致过载电流远远超出故障条件下的额定输出值。为构建能经受此类故障的电源,就必须采用较大的元件,但这却会给薄型笔记本适配器设计带来空间和散热两大难题。
TOPSwitch-HX已解决了上述难题。TOPSwitch-HX引入额外的电路,并在最终测试中采用参数调整技术,以控制开关频率与流限值平方的乘积的最大值和最小值,这在数据手册中用一个新的参数来表征,即功率因数(I2f)。
在图3中,对TOPSwitch-HX与上一代的TOPSwitch-GX(无I2f调整)的工作区域进行了比较。去除特性曲线的左下方区域(I2f=0.81),TOPSwitch-HX可确保在最差情况下提高通过变压器传导的最小能量。这样,使用一个初级绕组电感低于先前要求的大约9%的变压器,即足以在最差情况下提供指定的输出电流。去除右上方区域(I2f=1.21)可降低最大过载功率,同样,使用一个初级绕组电感低于先前要求的大约9%的变压器也可以实现这一点,从而降低电路中许多元件的最大功率要求。在TOPSwitch-HX中引入I2f调整技术,是设计薄型笔记本适配器的关键促成因素。该技术可在给定设计中使给定的变压器磁芯尺寸提供更多功率输出,使过载功率与额定功率的比率大幅降低,并使导通损耗更小。
图3:功率因数的影响
集成多模式控制及I2f调整功能的TOPSwitch-HX器件,13.5mm的净空高度可容纳整个电源,而制造成本却与双倍尺寸的适配器相当。该设计的平均功率效率大于87%,超出了能源之星EPS v2.0的要求。当采用交流230V输入时,电路空载功耗可降到300mW以下,远远低于能源之星所允许的500mW空载功耗。
综上所述,采用TOPSwitch-HX的超薄型笔记本适配器不再昂贵。所有笔记本适配器都可以采用这种方式进行设计和制造,既节省材料又节约能耗。超薄型笔记本适配器可节省功率和成本。